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Abstract—Spatiotemporal databases are becoming increasingly more common. Typically, applications modeling spatiotemporal

objects need to process vast amounts of data. In such cases, generating aggregate information from the data set is more useful than

individually analyzing every entry. In this paper, we study the most relevant techniques for the evaluation of aggregate queries on

spatial, temporal, and spatiotemporal data. We also present a model that reduces the evaluation of aggregate queries to the problem of

selecting qualifying tuples and the grouping of these tuples into collections on which an aggregate function is to be applied. This model

give us a framework that allows us to analyze and compare the different existing techniques for the evaluation of aggregate queries. At

the same time, it allows us to identify opportunities for research on types of aggregate queries that have not been studied.

Index Terms—Spatiotemporal databases, aggregation queries, aggregate function.
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1 INTRODUCTION

A wide variety of scientific and business applications
need to capture the spatial and time-varying char-

acteristics of the entities they model. Spatial, temporal, and
spatiotemporal applications are becoming more common
with the increasing capabilities of computer systems to
store and process large amounts of information. Examples
of such applications include land management, weather
monitoring, natural resources management, environmental,
ecological, and biodiversity studies, tracking of mobile
devices, and navigation systems.

Typically, spatiotemporal applications store vast
amounts of data. For example, remotely sensed data from
NASA is captured at a rate of several Gigabytes a day.
Clearly, due to the size of the data sets, the study of
individual entries in the database is rarely feasible, and, in
some cases, not possible for legal reasons (i.e., keeping track
of the trajectory followed by a cell phone user). In addition,
as data sets grow larger, there is a need for extracting
general characterizations of large subsets of the data.
Therefore, it is useful to develop techniques that efficiently
summarize and discover trends in data and help in decision
making. For example, in a traffic control application, rather
than studying the precise position of every single vehicle in
a particular road, it may be of interest just to know the
overall number of cars crossing an intersection during rush
hour. This summarized information may support decisions
regarding the construction of new roads and underpasses
or the addition of new traffic lights, for instance. Similarly,
for biodiversity studies, it might be of interest to determine
the distribution of taxa in a particular region, rather than

the specific position of each plant or animal. Once a region
rich in biodiversity has been detected, it can be considered
for declaration of a natural reserve.

In recent years, there has been an increasing amount of
research work dedicated to spatiotemporal data. Efforts
have focused on identifying relevant characteristics of
spatiotemporal entities and in providing models for this
new kind of data [2], [12], [22], [58], [67], [78]. We have also
observed interest in the organization of data for efficient
retrieval [32], [57], [65]. The goal of this paper is to provide a
survey on state-of-the-art techniques for computing spatio-
temporal aggregate functions, a topic of fervent interest
during the last few years. (An example spatiotemporal
aggregate is: For every county in the state of Arizona, what
has been the yearly forest density for the last 10 years? Note
that both the underlying data and the result vary over space
and time.)

Aggregate functions are widely used in database
applications. Their popularity is reflected in the presence
of aggregates in a large number of queries in the decision
support benchmark TPC-D [28]. The ability of aggregate
functions to provide summarized information from a large
collection of data is indeed fundamental in specific,
increasingly relevant, application domains such as On Line
Analytical Processing (OLAP), decision support, statistical
evaluation, and management of geographical data [9], [11],
[14], [29], [33], [83].

In this paper, we decompose a spatiotemporal object into
the different extents associated with it, namely, its explicit
attributes, its spatial extent, its temporal extent, and the
combination of spatial and temporal extents. We similarly
characterize all the distinct types of spatiotemporal aggrega-
tion queries that can be of interest for a given user. This
characterization allows us to classify different approaches in
the literature within a common framework. The rest of this
survey is organized as follows: Section 2 gives the prelimin-
aries on spatiotemporal objects and aggregation. The follow-
ing three sections present the semantics of aggregate
functions for traditional relational databases, temporal
databases, and spatial databases, alongwithmost techniques
for computing aggregates on such databases. Section 6 is
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devoted to spatiotemporal aggregation. Opportunities for
research are presented in Section 7. Finally, Section 8
summarizes the state of the techniques described in this
paper.

2 PRELIMINARIES

In studying previous research on aggregation, we have
observed inconsistencies in the problemdefinition, aswell as
in the terms used to refer to specific concepts. Therefore, we
start with a concrete definition of the problem of aggregation
on databases and present a model to describe aggregation
queries. Such amodel can be applied to traditional databases
in which objects lack temporal or spatial extent, as well as to
temporal, spatial, and spatiotemporal databases. This allows
us to classify previous work on aggregation and to identify
areas of this problem that have not yet been addressed by the
research community.

By definition, a spatiotemporal object is a unified object
with spatial and temporal extent [12], [82]. A pure spatial
object can be either a point, a line, or a region in two or
three-dimensional space [21], [46], [80]. If no spatial
information is required, no spatial extent is associated to
the object. The time extent of an object can be modeled by
either valid time, transaction time, or both (in which case,
the object is known as a bitemporal object) [19]. Of course,
the time variation of the objects being modeled may be of no
relevance, in which case, the temporal extent of the object is
simply ignored. When the time-varying behavior of a
spatial object is of interest, we have objects that change
position, shape, and both position and shape [78]. There-
fore, the combination of the temporal extent with the spatial
extents of an object leads to different models, ranging from
snapshots to three-dimensional, four-dimensional, and even
five-dimensional objects depending on the different defini-
tions of time and space [35], [82].

2.1 Aggregate Functions

An aggregate function takes a set of tuples and returns a
single value that summarizes the information contained in
the set of tuples [9], [29], [42]. In the context of this survey,
aggregation is the effect of applying an aggregate function to
a group of qualifying tuples. Aggregate functions have
received several names in the extent research literature.
Epstein differentiates between scalar aggregate and aggregate
function to distinguish between queries returning single or
multiple aggregate values [20]. In Epstein’s work, an
aggregate query can return several results if the tuples are
first partitioned into disjoint subsets based on a grouping
attribute (i.e., a GROUP-BY query). The SQL standard uses
the term set functions to refer to aggregate functions. In the
rest of this paper, we refer to the functions computing an
aggregate value from a set of tuples as aggregate functions.

As we will see, there is no need to differentiate between
functions returning either single or multiple aggregate
values. Multiple aggregate values are the result of an
orthogonal operator that partitions the relation into sets of
tuples also known as aggregation groups. We favor the term
aggregate function over set function used by SQL because it is
more specific.

The SQL standard provides a variety of aggregate
functions. The SQL-92 standard includes five such func-
tions, namely, COUNT, SUM, AVG, MIN, and MAX [50]. The
SQL:1999 standard adds EVERY, SOME, and ANY, whereas
the SQL/OLAP addendum1 to the SQL:1999 standard
includes 18 additional aggregate functions [50].

2.2 Aggregation on Explicit Attributes

Aggregate functions are applied to a collection (i.e., set) of
tuples. Given a relation, a collection of tuples can be
generated at three different levels. For example, consider
the relation employees given in Table 1, whose schema is
fName;DepartmentId;Age; Salaryg. A typical aggregate
query on this relation could be the following.

Query 1. Compute the highest salary on each department.

The results for Query 1 are shown in Table 2. In this case,
the MAX aggregation function is applied to collections of
tuples created by a process known as group composition. In
group composition, tuples sharing the same values in a list of
attributes (termed grouping attributes) form a collection.
Because these collections of tuples result from grouping
composition, let us call them groups. Aggregate functions are
then applied to each group of tuples. This procedure
aggregates information at a coarse level because a single
aggregate value is generated for each group. In the case of
Query 1, two groups of tuples were generated by the distinct
values ofDepartmentId (i.e., the grouping attribute).

Different queriesmayrequest togenerate aggregatevalues
at a finer level. Consider, for example, the following query.

Query 2. Within each department, compute the highest salary by
age. For each different value of age, consider the salary of the
next youngest employee.

The results for Query 2 are shown in Table 3 (for
brevity, only the results for the first department are
shown). In this case, the MAX aggregate function is
applied to collections of tuples generated by a process
known as partition composition. During partition composi-
tion, tuples sharing the same values in a list of attributes
(termed partition attributes) are placed in the same
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1. The aggregate functions defined in SQL/OLAP are STDDEV_POP,
STDDEV_SAMP, VAR_POP, VAR_SAMP, COVAR_POP, COVAR_SAMP, CORR,
REGR_SLOPE, REGR_INTERCEPT, REGR_COUNT, REGR_R2, REGR_AVGX,
REGR_AVGY, REGR_SSX, REGR_SSY, REGR_SYY, PERCENTILE_DISC, and
PERCENTILE_CONT.

TABLE 1
Employees: A Sample Relation

TABLE 2
The Result of an Aggregate Query Using Group Composition

and the MAX Aggregate Function



collection. Because these collections result from partition-
ing composition, let us call them partitions. For Query 2,
partition composition has been defined on DepartmentId,
resulting in two partitions. Aggregate functions are not
applied directly to partitions. Instead, sliding window
composition is performed on each partition. During sliding
window composition, a window frame is placed around
each tuple in the partition. A window frame is defined
using a range of values (logical size) or a number of
tuples (physical size), either leading or trailing (or both)
each tuple in the partition. In the case of Query 2, the
window frame was defined as “1 tuple trailing.” This
effectively selects a set of tuples on which an aggregate
function is applied. For example, for the first tuple in the
partition (i.e., Praveen), there are no tuples trailing.
Hence, the aggregate function is applied only to the
current value of Salary (45,000 in this case). For the
second tuple in the partition (i.e., John), the window
frame selects the current and previous tuples in the
partition. The MAX aggregate function is then applied to
the set f45; 000; 42; 000g, resulting in the aggregate value
45,000. For the third tuple in the partition, the aggregate
function is applied to the set f42; 000; 80; 000g, yielding
the aggregate value 80,000. Note that, in this case, we
generate an aggregate value for every tuple in every
partition of every group. If group composition is not used
(such as in Query 2), the entire relation is considered as a
single group.

To complement the aggregate functions, the SQL
standard includes mechanisms for defining collection of
tuples at these three levels. The SQL-92 standard includes
the GROUP BY clause to perform grouping composition. The
need for partitioning and sliding window composition was
later noted and the SQL:1999 standard includes the WINDOW
clause to address both of these needs.

2.3 Aggregation on the Temporal and Spatial Extent

Similar to the case for explicit (nontemporal and nonspatial)
attributes, the implicit attributes of a spatiotemporal object
can be used to define collections of tuples on which to apply
aggregate functions. For the temporal dimension, these
collections are defined by a process called temporal grouping
[40], in which the time line is partitioned and tuples are
grouped over these time partitions. Temporal aggregation,
as studied in the literature, uses time granularities as the
building blocks for temporal grouping. Different granula-
rities of the time dimension can be used to define temporal
group composition, temporal partition composition, and temporal
sliding widow composition. Details on how this is achieved,
along with illustrative examples, will be presented in
Section 4.

Similar to temporal grouping, space grouping is the
process of defining collections of tuples based on a partition

of space. Different levels of spatial granularities can be used
to define spatial group composition, spatial partition composi-
tion, and spatial sliding window composition in a spatial
relation. Further details and examples will be presented in
Section 5.

The temporal and spatial extents of spatiotemporal
objects are orthogonally defined. Therefore, the concept of
aggregation groups can be defined independently on each
dimension and should not affect our formalism. The reader
is referred to Section 6 for a detailed description of
spatiotemporal aggregation.

3 AGGREGATE FUNCTIONS ON EXPLICIT

ATTRIBUTES

Computing aggregations has always been considered an
important feature of practical database query languages. An
aggregate query is a query involving aggregate functions and it
usually includes predicates and other operators to select
and reorganize qualifying tuples from the database.

Aggregate functions produce a single value over a
collection of qualifying tuples from a relation [9], [29],
[42]. As we have mentioned in Section 2.2, these collections
of tuples can be defined using group composition (e.g., the
GROUP-BY clause in SQL) and partition and sliding
window composition (e.g., the WINDOW clause in SQL).
Klug [42] provided a formal framework for defining
aggregate functions for relational databases. In his model,
for a relation with n attributes, he proposed using a set of n
aggregate functions, each function defined on one attribute
of the relation. Formally, for a relation R with schema
fA1; A2; . . . ; Ang, with each attribute Ai associated with
domain Di, a countable set Agg ¼ ff1; f2; . . . ; fng of aggre-
gate functions should exist. Each function fi 2 Agg operates
on attribute Ai 2 R and, for each function fi 2 Agg,
fi : D1 �D2 � . . .Dn ! Dagg, where Dagg is the domain of
the aggregate function. Note that Dagg can be different from
Di. For instance, consider the AVG aggregate function. In
such a case, while Di can be the set of integers, Dagg will
correspond to the set of reals. Here, we present a framework
for analyzing aggregate queries based on the mechanisms
used to define collections of tuples.

3.1 Formal Definition of Aggregation on Explicit
Attributes

The aggregation functions defined by the SQL-92 stan-
dard can be evaluated as indicated in Table 4. Each of
these functions operates over a virtual relation. This
virtual relation is a collection of tuples defined by group
composition, partition composition, and sliding window
composition. Let us consider an aggregate query using
group composition such as Query 1 presented in the
previous section. In this query, tuples were first assigned
to collections based on the value of their attribute
DepartmentId. Then, an aggregate function (e.g., MAX)
was applied to each collection. Formally, an aggregate
query using group composition generates an aggregate
value for each resulting group as follows.

Definition 1 (Aggregation Using Group Composition).

Given an aggregation query on relation R and a select
predicate SP, using group composition to define collections of
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The Result of an Aggregate Query Using Partition Composition
on DepartmentId, Sliding Window Composition on Age, and

MAX Aggregate Function on Salary



tuples based on the values of attribute list A of R, the solution
to the query can be generated as follows:

Let S be the set of distinct values contained in the attribute
list A. That is, S ¼ �AðRÞ. Every s 2 S partitions the value
domain of A and generates groups of tuples from R as

GA;SP ðs; RÞ ¼ frjr 2 R ^ r½A� ¼ s½A� ^ SP ðrÞg: ð1Þ

Now, the solution to an aggregate query using the groups of
tuples defined by S over relation R, S ¼ �AðRÞ, is given by the
expression

GAggfi;A;SP ðRÞ ¼ fs � fiðGA;SP ðs; RÞÞjs 2 �AðRÞg;

where fi is the aggregate function. This query produces a new
relation whose schema is A [Agg.

Let us now consider an aggregate query using partition
composition such as Query 2 presented in the previous
section. As we have seen, this query generates collections of
tuples based on the values of a list of attributes, but, instead
of generating a single aggregate value for each collection, an
aggregate value for every tuple in the collection is
generated. Therefore, there is a need to define a window
to slide through all tuples in the collection. An aggregate
function is then applied to the set of tuples covered by the
window. Formally, an aggregate query using partition
composition generates an aggregate value for each tuple
in the relation as follows:

Definition 2 (Aggregation Using Partition Composition).
Given an aggregation query on relation R and a select
predicate SP, using the partition composition to define
partitions of tuples based on the values of attribute list A of
R and sliding window composition based on a single
attribute B of R, the solution to the query can be generated
as follows:

Let the list of attributes A of R create a data partition P as
defined by (1). During sliding window composition, for each
tuple p in P , a window frame is defined by the following
expression:2

WFprecedes;follows;Bðp; P Þ ¼ ftjt 2 P ^ ðp½B� � precedesÞ
� t½B� � ðp½B� þ followsÞg:

In the expression, p½B� gives the value of attribute B of p and
precedes and follows are query arguments. Now, the solution
to an aggregate query using data partitions defined by A over
relation R, window fames defined on attribute B of R, and a
range on B defined by precedes and follows, is given by the
following expression:

WAggfi;A;SP;B;precedes;followsðRÞ ¼
fp � fiðWFprecedes;follows;Bðp; P ÞÞjp 2 PA;SP ðs; RÞ ^ s 2 �AðRÞg

The resulting relation has schema R [Agg.

We can evaluate Query 2 using this semantics. For this,
we simply need to set the values of precedes and follows to 1
and 0, respectively. The sliding window is defined on
attribute Age (i.e., B ¼ Age). Similarly, the list of partition
attributes A ¼ fDepartmentIdg and fi ¼ MAXSalary.

3.2 Existing Approaches for Evaluating Aggregate
Queries

A simple two-step algorithm was proposed by Epstein for
evaluating aggregate queries [20]. To handle many aggre-
gate functions in a query, the algorithm computes each of
them separately and stores each result in a singleton
relation, referring to that singleton relation when evaluating
the rest of the query. A different approach employing
program transformation methods was proposed by Freytag
and Goodman to systematically generate efficient iterative
programs for aggregate queries [23]. For brevity, we omit
further details on these methods because they are not
critical to understanding spatiotemporal aggregation.

Recently, research work has explored diverse aspects of
the aggregation operation. Among them are optimization,
for applications where performance is of utter importance
[44], [83], online aggregation, where the user is aware of the
progress made by the query processor and he/she is
capable of stopping the query once an acceptable result has
been achieved [31], [33], or approximate solutions, for
applications where an exact solution is not required and a
fast good answer is preferred [10], [11], [26], [27]. These are
techniques that can be applied to the computation of
aggregate functions in general. We provide more detail
whenever these techniques are presented as part of the
existing approaches for evaluating temporal, spatial, or
spatiotemporal aggregation.

3.3 Aggregation and OLAP

Typical OLAP queries aggregate data across several
attributes (i.e., columns) in a relation. The CUBE operator
[29], for instance, was proposed as the n-dimensional
generalization of the GROUP-BY clause in SQL. It computes
GROUP-BY s corresponding to all possible combinations of a
list of attributes. This implies finding the power set of all
attributes in the relation, which is not a trivial task. Thus,
solving aggregate queries in OLAP applications has
inspired a considerable amount of research work. A general
assumption in the CUBE operator is that the aggregate
function being computed is distributive. Therefore, aggre-
gate functions can be partially computed on disjoint subsets
of data. By precomputing the aggregated results of different
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2. While the SQL standard contemplates the possibility of defining
window frames by specifying its physical size, this implies having some
ordering in the tuples. This is not possible using set algebra. Therefore, we
do not contemplate this possibility in our model.

TABLE 4
Evaluation of the SQL-92 Aggregate Function



subsets of data, the total processing time of a query can be
drastically reduced. The final result can be obtained by
properly merging these partial results [3], [14], [34].

While the different columns in a data cube are usually
called “dimensions,” they generally cannot be considered as
dimensions in a spatial database. This is because some of the
dimensions in a data cube (e.g., CustomerId) are defined over
discrete domains which do not have a natural ordering
among their values (customer 1; 000 cannot be considered
“close” to customer 1; 001). In such cases, any ordering
defined for the values in one of these columns is arbitrary. For
this reason,wedifferentiate databases forOLAP applications
from spatial databases. For the same reason, we do not
consider these “dimensions” as a special extent of the entities
modeled by the database; instead, they can be regarded as
explicit attributes that characterize a particular entity.

4 TEMPORAL AGGREGATES

While a conventional database models the reality relevant
to an enterprise as a single state, a temporal database is one
that supports some aspect of time and keeps track of the
different states of the database. Time-varying data is
common and applications that manage such data abound
[6], [49], [86]. In a temporal database, the temporal data is
modeled as a collection of line segments. These line
segments have a begin time, an end time, one or more
time-invariant attributes, and one or more time-varying
attributes. It is well-known that database facts have at least
two relevant temporal aspects. Valid time concerns when a
fact was true in the modeled reality. Transaction time, on the
other hand, concerns when a fact was current in the
database. These two aspects are orthogonal in that each
could be independently recorded or not and each has
associated with it specific properties [6], [36], [68], [69]. All
methods to date have focused on one time dimension only.
However, most of them can be easily extended to handle
either valid or transaction time.

4.1 Formal Definition of Temporal Aggregation

Computing temporal aggregates is a significantly more
intricate problem than conventional aggregation because
each database tuple is accompanied by a time interval
during which its attribute values are valid. Consequently,
the value of a tuple attribute affects the aggregate
computation for all those instants included in the tuple’s
time interval.

In traditional databases, where only explicit attributes
are of concern, aggregate functions are applied to collec-
tions of tuples that are defined by the different values in a
list of explicit attributes. For the temporal extent of an
object, collections of tuples can be defined based on time
granularities (such characterization will allow the
approaches we discuss below to be classified).

A time domain is the set of primitive temporal entities
used to define and interpret time-related concepts [18], [54].
Formally, a time domain is a totally ordered set of time
points with the ordering relation � . A granularity creates a
discrete image, in terms of granules, of the time domain.
Portions of the time-domain are grouped into aggregations
called granules. A granule is a subset of the time domain. A
granularity is a mapping G from the integers to granules.
Granularities are related in the sense that the granule in one

granularity may be further aggregated to form larger
granules belonging to a coarser granularity [7], [8], [18].

Temporal group composition is a mechanism that generates
collections of tuples. A collection, termed a group, is formed
by all tuples valid at the same time value at granularity G.
An aggregate function can then be applied to each group.
Temporal partition composition is used for handling queries
that require aggregation at a finer level. Temporal partition
composition defines collections of tuples, termed partitions,
based on the distinct time values at granularity H (H is finer
than G, denoted by H � G). However, aggregation func-
tions are not applied to these partitions. Instead, temporal
sliding window composition places window frames around
each time value at granularity J (J � H) within these
partitions. A window frame is defined by a time interval
leading, trailing, or leading and trailing every time value in
the partition. The aggregate function is applied to the set of
tuples valid for the window frame around each time value
within a partition.

The generation of collections of tuples based on some
partition of the time domain has received several names in
the research literature. In particular, we have encountered
the terms span grouping and instant grouping. For span
grouping, the timeline is partitioned in predefined intervals
such as year, month, or day [40]. Instant grouping, on the
other hand, is defined by the data [40], [53], [70]. These two
are really special cases of temporal group composition. In
the former, the granularity used is that of a year, month,
day, etc. In the latter, the granularity used for temporal
group composition is the finest granularity supported by
the temporal relation.

When computing temporal aggregation using group
composition, the resulting relation is a time-varying relation
defined at granularity G (i.e., the granularity of the groups).
Consider, for example, the following query.

Query 3. Compute the monthly average salary of all employees.

In this query, the timeline is partitioned using fixed
intervals (i.e., months). Groups of tuples are defined by
each temporal partition and the aggregation function is
applied to each group. This kind of aggregation query is
formally defined as follows:

Definition 3 (Aggregation Using Temporal Group Com-

position). Given a temporal relation RT and a select predicate
SP, let T ðG;RT Þ ¼ f� j� 2 castðr½vt�; GÞ ^ r 2 RTg, where
r½vt� gives the valid time of r, be the set of time values at
granularity G for which there is at least one tuple in the
temporal relation RT that is valid at that time value and at
that granularity. The function castðr½vt�; GÞ returns the time
values at granularity G that contain r½vt�. Each time value
� 2 T ðG;RT Þ defines a collection of tuples in RT based on a
time partition as follows:

PG;SP ð�; RT Þ ¼ ft j 9 r 2 RT ^ overlapsðcastðr½vt�; GÞ; �Þ
^ SP ðrÞ ^ ðt½A1; . . . ; An� ¼ r½A1; . . . ; An�Þ
^ ðt½vt� ¼ intersectðr½vt�; �Þg:

ð2Þ

The result of an aggregate query using temporal group
composition with granularity G is given by the following
expression:
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GBAggfi;G;SP ðRT Þ ¼ f� � fiðPG;SP ð�; RT ÞÞj� 2 T ðG;RT Þg:

In (2), r½A1; . . . ; An� refers to the explicit attributes of
tuple r 2 RT . Note that P , as defined by (2), does not
generate a strict partition of RT such as the case of (1).
Instead, P is a subset of the rows in RT . The temporal extent
of the tuples in P has been narrowed to a single granule in
granularity G. Also note that, in order to provide a clean
and simple notation, (2) generates groups based on the
implicit attribute valid time. This definition can be easily
modified to account for transaction time.

For an aggregation using temporal partition composi-
tion, on the other hand, there are at least two granularities
involved. The first (i.e., coarser) granularity defines collec-
tions of tuples called partitions, whereas the second (i.e.,
finer) granularity is used to define window frames during
temporal sliding window composition. When temporal
partition composition at granularity H is used in combina-
tion with temporal group composition at granularity G,
H � G. For example, consider the following query requir-
ing temporal partition composition and temporal window
composition.

Query 4. For every year, compute the moving average of salary of
all employees with respect to the previous two months.

In this case, a temporal partition is defined at the granularity
level of year. Within each partition, tuples are grouped by
month.All tuplesvalidat aparticularmonthand theprevious
twomonths form a group on which the aggregate function is
to be applied. The result of the query is an aggregate value for
every time value at the granularity level of month. We can
formally define this kind of query as follows:

Definition 4 (Aggregation Using Temporal Partition
Composition). Given a temporal relation RT and a select
predicate SP, let us use T ðH;RT Þ and PH;SP ð�; RT Þ as
before. Let J be a granularity such that J � H. For each
t 2 T ðJ;RT Þ, a window frame with respect to the time
partition defined by granularity H is generated as

WFH;SP;J;precedes;followsðt; RT Þ ¼ frjr 2 PH;SP ðcastðt;HÞ; RT Þ^
overlapsðcastðr½vt�; JÞ; ½t� precedes; tþ followsÞÞg;

where precedes and follows are query arguments that define the
aggregation group around each time value t within a window
partition.

The result of an aggregate query on temporal relation RT

with temporal partitions at granularity H and window frames
at granularity J with ranges defined by precedes and follows is
given here.

WAggfi;H;SP;J;precedes;followsðRT Þ ¼
fcastðt; HÞ � t � fiðWFH;SP;J;precedes;followsðt; RT ÞÞj

t 2 T ðJ;RT Þg:

For Query 4, we have used the granularity level year to
define partitions (H ¼ year) and the granularity level
month to define window frames (J ¼ month). The func-
tion castðt;HÞ obtains the time value for the granularity
level year from a particular month. For instance,
castð06=1973; yearÞ will generate the time value 1973. A
window frame is defined by including the previous two
temporal values at granularity level month (i.e.,

trailing ¼ 2), but no future values (i.e., leading ¼ 0). For
all tuples valid within a particular window frame, the AVG

aggregate function is applied.

4.2 Existing Approaches for Evaluating Temporal
Aggregate Queries

Various algorithms have been proposed for processing
temporal grouping and computing aggregation on a
temporal relation. These algorithms can be classified based
on the time when the aggregate value is computed.
Nonindexed evaluation algorithms scan the temporal relation
every time an aggregate query is issued. During this
process, collections of tuples are generated based on
temporal grouping and an aggregate function is applied
to each collection. Indexed evaluation algorithms, on the other
hand, preprocess aggregate values and store this informa-
tion in a disk-based data structure. Instead of scanning the
temporal relation when a query is issued, indexed evalua-
tion algorithms use this data structure for answering an
aggregation query.

4.2.1 Nonindexed Aggregation Evaluation

The earliest approach for evaluating temporal aggregation
was proposed by Tuma [79]. He proposed a two-step
algorithm. In the first step, the temporal relation is scanned
once to determine constant intervals. A constant interval is a
period for which the temporal relation remains unchanged
[70]. In the second step, the temporal relation is scanned
again to apply the aggregate function on the groups of
tuples defined by the constant intervals. Tuma’s approach is
based on Epstein’s [20] algorithm for computing aggrega-
tion over explicit attributes using the GROUP-BY operator.

I/O efficient algorithms for computing temporal aggre-
gation were developed after Tuma’s initial approach. These
methods require reading the temporal relation only once. A
data structure (usually maintained in main memory) is
created as tuples in the temporal relation are processed. The
resulting data structure holds sufficient information to
compute temporal aggregation.

The Aggregation Tree: Kline and Snodgrass [40] proposed
an algorithm for computing temporal aggregation using a
mainmemory-based data structure. The proposed algorithm
was called aggregation tree because it builds a tree while
scanning a temporal relation. After the tree has been built, the
answer to the temporal aggregation query is obtained by
traversing the tree in depth-first search. It should be noted
that this tree is not balanced. Therefore, the order of tuples
inserted into the aggregation tree affects its performance. If
the tuples are sorted on the start time and inserted in that
order, the aggregation treewould lookmore like a linked list,
causing insertions to be slower than insertions into abalanced
binary tree. For this reason, the worst case time to create an
aggregation tree isOðn2Þ for n tuples sorted in time. An even
more serious limitation of the aggregation tree approach is
that the entire tree must be kept in memory. Since the size of
an aggregation tree is proportional to the number of distinct
timestamps in the temporal relation, the size of the database
the aggregation tree algorithm can deal with tends to be
limited by the size of available memory and the number of
distinct timestamps of tuples.

To minimize memory limitations, a variant of the
aggregation tree, called k-ordered aggregation tree, was
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proposed by the same authors. The k-ordered aggregation
tree takes advantage of the k-orderedness of tuples to enable
garbage collection of tree nodes so that the memory
requirements can be reduced significantly. However, the
k-ordered aggregation tree approach assumes that the
tuples in a table are ordered within a certain degree.
Specifically, each tuple is at most k positions from its
position in a totally ordered version of the table. This
requirement is difficult to meet in a real database. Without
a priori knowledge about a given table, the k-orderedness is
expensive to measure, as it requires an external sort of the
table. The worst case running time of the k-ordered
aggregation tree algorithm is still Oðn2Þ.

In an extension of his previous work, Kline [41] proposed
using a 2-3 tree, which is a balanced tree, to compute
temporal aggregates. The leaf nodes of the tree store the
time intervals of the aggregate results. Like the aggregation
tree, this approach requires only one database scan. Note
that, because it is a balanced tree, the running time is
Oðn lognÞ. However, its main limitation lies in the require-
ment that a database be initially sorted by start time. It has
been shown that, for a randomly ordered database, the
aggregation tree performs better than the 2-3 tree approach
[41]. This is due to the preprocessing cost required by the
2-3 tree approach to sort the database.

The PA-tree: Kim et al. proposed an algorithm for
computing temporal aggregation that is asymptotically
better than the aggregation tree. The proposed method is
based on the point-based aggregation tree (PA-tree) [39], which
stores timestamps instead of intervals in an AVL tree. This
approach requires one scan of the temporal relation for
building the tree. Since the tree is balanced, the time
complexity for building the tree is Oðn lognÞ rather than
Oðn2Þ for the aggregation tree. In addition to timestamps,
each node in the PA-tree stores either a single aggregate
value for computational aggregates such as COUNT, SUM,
and AVG aggregation, or a list of value-length pairs for
selective aggregates such as MIN and MAX aggregation.
Computing the algebraic aggregate functions is performed
by doing an in-order traversal of the tree and updating
aggregate values by the amount indicated on each encoun-
tered node. Selective aggregate functions are computed by
merging the lists of pairs associated to each tree node in
similar way to the skyline problem [48].

The Balanced Tree: Moon et al. proposed two I/O and
computationally efficient algorithms for the evaluation of
temporal aggregates [52], [53]. A balanced tree is presented
for solving temporal aggregation involving computational
aggregates (i.e., COUNT, SUM, and AVG). The motivation
behind the balanced tree algorithm is that all timestamps in
the temporal relation can be sorted incrementally by

inserting them into a balanced tree as the tuples of an
input database are being scanned. Each node of a balanced
tree stores a timestamp, either a start time or an end time,
and two counters: one storing the number of tuples starting
at the timestamp and the other storing the number of tuples
ending at the timestamp. Once it has been built, the
balanced tree is used to identify constant intervals in the
database. Because changes in the database occur only at the
timestamps stored in the tree, two consecutive timestamps
define a constant interval. The computational cost of
processing temporal aggregation is reduced because the
query processor needs to generate just one aggregate value
per constant interval. This information is sufficient to know
what the aggregate value at every point in time is.

Fig. 1a shows the resulting balanced tree for a COUNT

aggregate query on the temporal relation given by Table 5a.
Asa reference, the result for thequery ispresented inTable5b.
On the balanced tree, processing a query needs an inorder
traversal of the tree to find constant intervals. During this
traversal, the information on the counters of each node is
combined to compute the aggregate value for each constant
interval. In the case of a COUNT query, the aggregate value for
a constant interval is given by the COUNT of the previous
interval plus the number of tuples starting at the start
timestamp of the interval minus the number of tuples ending
at the start timestamp of the interval.

For queries involving selective aggregates (i.e., MIN and
MAX), Moon et al. proposed a bottom-up aggregation
approach, termed the merge-sort aggregation algorithm. Like
the classical merge-sort algorithm based on the divide-and-
conquer strategy, the merge-sort aggregation algorithm
computes a larger (intermediate) aggregate result bymerging
two smaller (intermediate) aggregate results. The algorithm
starts with merging tuples in pairs at the bottom and
terminateswhena final aggregate result is obtainedat the top.

Both of these techniques are constrained by the amount
of main memory available in the system. To overcome this
limitation, Moon et al. proposed the use of a data structure
called the meta array. By using the meta array, tuples in the
base relation can be grouped into small subsets (following
some partition of the time line) for which temporal
aggregation can be computed given a limited buffer space.
The meta array will maintain the aggregate information of
tuples overlapping the intervals given by this time partition
to guarantee the correctness of the result.

Parallel Temporal Aggregation: Here, we discuss algo-
rithms that have been developed for the parallel processing
of temporal aggregation in large-scale databases. Ye and
Keane proposed two approaches to parallelize the aggrega-
tion tree algorithm on a shared-memory architecture [85].
They propose parallelizing temporal aggregation queries

VEGA L�OOPEZ ET AL.: SPATIOTEMPORAL AGGREGATE COMPUTATION: A SURVEY 277

Fig. 1. Nonindexed and indexed temporal aggregation. (a) Balanced tree. (b) SB-tree.



that include GROUP-BY on explicit attributes. Each group
defined by the grouping attribute is send to a processor
where the temporal aggregation is computed locally.

Gendrano et al. have also developed several parallel
algorithms [25] for computing temporal aggregates, specifi-
cally on a shared-nothing architecture, by parallelizing the
aggregation tree algorithm. Gendrano et al. showed promis-
ing scale-up performance of the parallel algorithms through
extensive empirical studies under various conditions. None-
theless, all the aforementioned parallel algorithms inherit the
same limitations from the aggregation tree algorithm as the
parallel algorithms were developed by parallelizing the
aggregation tree. In particular, the size of the database those
parallel algorithms can handle will be limited by the
aggregate memory of participating processors.

Moon et al. [52], [53] extended the notion of meta array to
cover several processors while computing temporal aggre-
gates in parallel. A global meta array maintains aggregate
information about tuples overlapping the time interval
assigned to each processing node, whereas local meta
arrays are used to compute temporal aggregation locally on
each node.

All the nonindexed evaluation algorithms for temporal
aggregation presented here address the same type of query.
At a logical level, this type of query can be described as
follows: First, for each time value � at the finest granularity
supported by the temporal relation, a collection of tuples is
generated. The collection corresponding to the time value � is
formedbyall tuples in the temporal relationvalidduring time
� . Second, an aggregate value is generated for each collection
and the corresponding time value � is annotated with this
aggregate value. Finally, consecutive time values annotated
with the same aggregate value are coalesced into a constant
interval, that is, a time interval for which the temporal
aggregatevalue remains constant.Note that this typeofquery
corresponds to temporal aggregation queries using temporal
group composition as presented by Definition 3. The
granularity used during group composition equals the finest
granularity supported by the temporal relation.

4.2.2 Indexed Aggregation Evaluation

A more recent approach for evaluating temporal aggrega-
tion queries was proposed by Yang et al. They introduced
the SB-tree [84] for incrementally computing temporal
aggregates using a materialized view approach. The SB-
tree was developed for a data warehouse environment in
which mostly insertions are expected. If deletion operations
are expected, then MIN and MAX aggregation queries are not

supported since these aggregate values cannot be incre-
mentally maintained under deletions. The SB-tree is a disk-
based structure that combines aspects of the segment tree
and the B-tree. It creates a balanced tree just as the B-tree
and, at the same time, it maintains a hierarchy of intervals.
Each of these intervals is associated with a partially
computed aggregate. Fig. 1b shows the resulting COUNT

SB-tree for Table 5a. Aggregation over a given temporal
interval is evaluated by performing a depth-first search on
the tree and accumulating the partial aggregate values
along the way. For instance, generating the aggregate value
for the interval ð7; 8Þ in Fig. 1b requires visiting the root
node. The root node indicates that, for interval ð7; 8Þ, we
need to accumulate the preaggregate value 0. When the leaf
node is visited, it indicates that the value 1 needs to be
added to the partial aggregate 0. Therefore, the aggregate
value for the interval ð7; 8Þ is 1.

In addition to supporting temporal queries involving
temporal group composition, the SB-tree supports queries
that require a sliding window termed in their paper
cumulative aggregate queries. For every time value � at the
finer granularity supported by the temporal relation, a
cumulative aggregate query defines a window frame
around � using a time interval of length w preceding � .
All tuples valid during the interval ½� � w; � � form a
collection for which an aggregate value is generated.
Cumulative aggregate queries can be defined by our model
using temporal partitioning and sliding windows. The
granularity used for the sliding window definition should
be the finest granularity supported by the temporal relation.
The granularity used for the temporal partition definition
should be so coarse that all tuples in the temporal relation
belong to the same collection.

One drawback of the SB-tree lies in the assumption that
aggregate queries are always evaluated over the entire base
relation. This is a clear disadvantage because aggregate
queries usually specify a number of predicates to select the
tuples on which temporal aggregation should be computed.
The multiversion SB-tree (MVSB-tree) introduced by Zhang
et al. [89] was specifically designed to address this issue. It
was proposed to deal with temporal aggregate queries
coupled with range predicates on explicit attributes, termed
range temporal aggregates [89]. The MVSB-tree is logically a
series of SB-trees, one for each timestamp. Given a range on
the values of one of the explicit attributes r and a temporal
interval i, the MSVB-tree computes the aggregate of all the
tuples within r and valid during i as a series of additions
and subtractions of values stored in the index. Because this
is a form of preaggregation, only distributive aggregate
functions can be evaluated by the MVSB-tree, in particular
SUM, COUNT, and AVG.

The effectiveness of the MVSB-tree is limited by the size
of its index, which can be larger than the database [74]. This
limitation was overcome by Tao et al. [74] using an
approach that computes an approximate solution to
aggregate queries while maintaining only a small index.
This approach is based, at a logical level, on a MVB-tree, but
can be practically implemented using an B-tree and an
R-tree. In particular, Tao et al. can approximately evaluate
queries containing COUNT and SUM aggregate functions. The
approaches presented by Zhang et al. [89] and Tao et al. [74]
were designed for the evaluation of nonsequenced queries
(i.e., the query does not result in a temporal relation). Once
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a set of tuples has been selected by a range predicate given
on one of the explicit attributes and by a temporal predicate,
the temporal information of the tuples is discarded. There-
fore, the time-evolving information of the aggregate value
for the time interval indicated by the query is lost. We
should note that, while sequenced aggregate queries can be
evaluated using these approaches by issuing a query for
every time value at the desired granularity, such an
evaluation might not be efficient. In addition, there is a
side effect of ignoring the temporal nature of data known as
the distinct count problem. This problem occurs when a
temporal object remains in the query range for several
timestamps during the query time interval. In such a case,
the same object could be counted multiple times [72], unless
the algorithm explicitly avoids doing so.

One drawback of indexed evaluation algorithms is that
they either assume that aggregate queries do not include
predicates on explicit attributes [84] or they assume that
predicates are defined on a single attribute [74], [89].
Another disadvantage of these algorithms is that they can
only process certain types of aggregate functions. In
particular, partial aggregation, or preaggregation, can only
be used for distributive functions such as those included in
the SQL-92 standard [29]. Holistic aggregate functions (e.g.,
MEDIAN) cannot be combined with preaggregation. There-
fore, queries involving holistic aggregate functions cannot
be processed with indexed evaluation methods.

4.3 Aggregates on Data Streams

Data streams are ordered sequences of value points that are
read/received in increasing order [4]. Because each value in
a data stream is usually associated with a timestamp
indicating either the time when the value was generated or
the time when the value was received, data streams may be
considered a special case of temporal data. Applications
requiring the use of data streams are increasingly common
and it is easy to find examples of data streams applications,
such as network monitoring, security, telecommunications
data management, web applications, manufacturing, and
sensor networks [4], [17], [88].

Because of the immense amount of data generated by the
stream, it is extremely costly to store all data in such a way
that it is readily available for answering queries. Instead,
stream data is either discarded or archived after having
been looked at just once. In consequence, most applications
only perform aggregate queries over data streams. Sum-
marized information about the data stream is often more
important than retrieving specific entries with certain
properties [62].

There are two models used for processing stream data
[16], [88]. The sliding window model is used when only recent
values in the data are of interest (i.e., within the past
w timestamps). The complete (or infinite window) model is
used when all values in the stream are of interest. While
stream data is a special case of temporal data, the complete
model essentially ignores its temporal properties.

The sliding window model for processing stream data
corresponds to temporal partition composition and tempor-
al sliding window composition in our model. The sliding
window composition is performed at the finest granularity
supported by the timestamps on the values of the stream.
The window frame is given by a trailing temporal interval
of size w and there is no leading temporal interval. The

temporal partition composition is such that the entire
stream data creates only one collection of values. Methods
developed to compute aggregation over data streams using
the sliding window model include those by Datar et al. [16]
and Zhang et al. [88]. Datar et al. present a method for
computing approximate solutions for the COUNT and SUM

aggregate functions. For this, they propose the use of
Exponential Histograms, a data structure that can be
incrementally maintained while preserving guarantees on
the approximate solutions to COUNT and SUM aggregate
queries. Zhang et al. [88] propose a mechanism for
computing temporal aggregation on stream data based on
a hierarchy of granularities. The main idea is to use
different granularities to aggregate data depending on its
age. Older data is aggregated at a coarser granularity,
whereas the most recent data is aggregate at the finest
granularity. The most recent data is aggregated following
the sliding window model. Established systems for stream
data management have also adopted this approach for
computing aggregate functions. One good example is
Aurora [1], which is a model and an architecture for data
stream management.

The complete model for processing data streams con-
siders all values in the stream read so far. Since data is not
available at query time, only approximate solutions to
aggregate queries are possible. For this, research work has
turned to the maintenance of summarized information in
the form of histograms [30], [62] or sketches [15], [17]. We
do not provide further details on these methods because
they ignore the temporal characteristics of data while
evaluating aggregate queries.

5 SPATIAL AGGREGATION

Spatial data appear in numerous applications, such as GIS,
multimedia, and even traditional databases. Spatial database
systems organize andmanage large amounts of multidimen-
sional data. Objects stored in spatial relations are associated
with spatial extents that define their geometric features [47].
These objects are usually points, lines, polygons, and
volumetric objects [81]. Spatial relations are indexed by
multidimensional access methods, such as R-trees, for the
efficient processing of queries such as spatial selections or
spatial joins [24], [47], [66]. Due to the complexity of the
spatial operators, the large amount of data, and the difficulty
in defining a spatial ordering, a traditional relational
DatabaseManagement System (DBMS) may not be adequate
to efficiently support spatial data. Therefore, DBMSs must
offer spatial queryprocessingcapabilities tomeet theneedsof
such applications [6], [47], [49], [81].

Aggregate queries over spatial data require the organiza-
tion of tuples from a spatial relation into collections based
on their spatial extent. Aggregate functions are then applied
to these collections. Spatial aggregation, as studied in the
literature, can be viewed as aggregates on collections of
tuples based on granularities of the spatial domain. A
spatial domain may be represented as a set (e.g., R3, R2, N3,
N2), with elements referred to as points. However, for
geographic applications, horizontal space (e.g., latitude and
longitude) is usually segregated from vertical space (e.g.,
depth or altitude), with horizontal and vertical granularities
defined on the spatial domain [38].
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A horizontal spatial granularity may be defined as a
mapping from the integers to a subset of the space domain
such that 1) granules from a spatial granularity do not
overlap and 2) the index set of a spatial granularity
provides a contiguous encoding. Different granularity
levels for a horizontal space could be expressed in degree,
minute, or second, for example. The definition associated
with vertical spatial granularity is similar to temporal
granularity. Different levels of granularity for the vertical
space could be expressed using centimeter, meter, and
kilometer, for example. A three-dimensional granularity is
a cross product of the horizontal and vertical spatial
granularities [38].

5.1 Formal Definition of Spatial Aggregation

Different levels of spatial granularities can be used to define
group, partition, and sliding window composition in a
spatial relation. In spatial group composition, tuples sharing
the same space value at granularity G form a collection
termed group. For each group, an aggregate function is
applied and the group is annotated with the aggregate
value. When computing spatial aggregation using group
composition, the resulting relation is a spatial relation
defined at granularity G (i.e., the granularity of the groups).
Consider, for example, a land management application that
keeps track of forests in the US. The regions of land covered
by forest can be estimated from satellite data such as
Landsat [43]. The following is an example of spatial
aggregation query for this application.

Query 5. Compute the amount of land covered by forest in every
county of the state of Arizona.

This query can be answered by applying group composition
at granularity G ¼ county to the tuples that satisfy the
predicate “in the state of Arizona.” Then, for each collection
of tuples sharing the same spatial value (i.e., same county),
an aggregate function is applied. In this case, we apply SUM

on the area, where area is a property of any object with a
spatial extent. The answer to this kind of query can be
formally defined as follows:

Definition 5 (Aggregation Using Spatial Group Composi-

tion). Given a spatial relation RS and a select predicate SP, let
SðG;RSÞ ¼ fsjs 2 castðr½se�; GÞ ^ r 2 RSg be the spatial
counterpart of T ðG;RT Þ, where r½se� gives the spatial extent
of tuple r. Each space value s 2 S, defines a subset of tuples of
RS based on a space partition as follows:

PG;SP ðs;RSÞ ¼ ft j 9 r 2 RS ^ overlapsðcastðr½se�; GÞ; sÞ
^ SP ðrÞ ^ t½A1 . . .An� ¼ r½A1 . . .An� ^ t½se�
¼ intersectðr½se�; sÞg:

ð3Þ
The result of an aggregate query using spatial group

composition at granularity G is given by the following
expression:

GBAggfi;G;SP ðRSÞ ¼ fs � fiðPG;SP ðs;RSÞÞjs 2 SðG;RSÞg:

In (3), r½A1 . . .An� indicates the explicit attributes of tuple
r 2 RS , whereas r½se� indicates its implicit spatial extent.
Depending on the type of this spatial extent, (3) may or may
not define a strict partition of the data. If the base spatial

relation stores only point objects, a partition of the spatial
domain also defines a partition of the data. On the other
hand, if the objects stored in the relation correspond to
regions (say areas with different vegetation), then (3)
defines a subset of the rows in RS rather than a strict
partition. Similar to the case of (2), the spatial extent of the
tuples in P has been narrowed to a single granule of the
spatial granularity G.

Spatial partition composition is used when a finer level of
aggregation is required. During this process, each space
value at granularity H (H � G, where G is the granularity
used for spatial group composition) defines a collection of
tuples termed a partition. To each partition, we apply spatial
sliding window composition, which places a window frame
around each spatial value s at granularity J (J � H). A
window frame around s ¼< sx; sy > is defined as

WwindowsizeðsÞ ¼
f< x; y > jðsx � windowsize � x � sx þ windowsizeÞ^
ðsy � windowsize � y � sy þ windowsizeÞg;

ð4Þ

where windowsize is a query argument defining the size of
the window frame. In this case, s was a two-dimensional
spatial point and the window frame was a square.
However, (4) can be generalized for three-dimensional
spaces and for different shapes of windows. For every space
value s, an aggregate value is generated by applying an
aggregate function to the set of tuples valid for the window
defined around s.

When computing spatial aggregation using partition and
sliding window composition, the resulting relation is a
spatial relation containing one entry for every spatial value
at granularity J (i.e., the granularity used for sliding
window composition). To illustrate this, consider the land
management application described before, from which we
would like to detect a good place for founding a natural
reserve. In this case, we are interested in analyzing
information at a fine granularity. Clearly, finding the
county with the highest plant diversity is of not much use
in this case. The result of the following query might provide
the required information.

Query 6. Compute the average diversity of vegetation (i.e.,
number of species of plants) per square kilometer in each
county of the state of Arizona. For each square kilometer,
consider neighboring regions up to 2 km on each direction
(north, south, east, and west) to smooth out local variations.

To answer this query, we need spatial partition composition
using a granularity at the county level. Within each
partition, we define sliding window composition using a
granule of 1 km2. The aggregate function is then applied to
the set of tuples occurring within the limits of each spatial
window and that satisfy the spatial predicate “in the state of
Arizona.” In this case, the window frame is 5� 5 km
because leading or trailing spatial intervals of 2 kilometers
are used to account for the influence that neighboring
regions might have on the diversity of a particular region.
In general, the answer for this type of queries can be
formally expressed by the following definition.

Definition 6 (Aggregation Using Spatial Partition Com-
position). Given a spatial relation RS and a select predicate
SP, let us use SðH;RSÞ and PH;SP ðs; RSÞ as before. Let J be a
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space granularity with J � H. For each s 2 SðJ;RSÞ, a
window frame with respect to the spatial partition generated
by granularity H is defined as

WFH;SP;J;windowsizeðs; RSÞ ¼ frjr 2 PH;SP ðcastðs;HÞ; RSÞ^
overlapsðcastðr½se�; JÞ;WwindowsizeðsÞÞg;

where windowsize is a query argument that defines the
window frame around each space value s within a window
partition.

The result of an aggregate query on spatial relation RS with
spatial partitions at granularity H and window frames at
granularity J with range defined by windowsize is given by

WAggfi;H;J;windowsizeðRSÞ ¼
fcastðs;HÞ � s � fiðWFH;J;windowsizeðs;RSÞÞjs 2 SðJ;RSÞg:

5.2 Existing Approaches for Evaluating Spatial
Aggregate Queries

Various algorithms have been proposed to evaluate
aggregate queries on spatial databases. Because these
queries usually include a spatial selection predicate
describing a multidimensional box or window, they are
often referred to as box aggregation queries. Aggregate
queries with these spatial predicates retrieve summarized
information of the objects that either partially or completely
overlap the region defined by the multidimensional
window [45], [75], [81], [91].

In Section 4, we classified existing approaches for the
evaluation of temporal aggregates into either nonindexed or
indexed evaluation algorithms. However, for spatial aggre-
gation, we have only encountered indexed evaluation
algorithms. That is, rather than answering directly from
the data stored in a spatial relation, they rely on a small
disk-based data structure to answer the queries. Further-
more, to the best of our knowledge, all these methods only
focus on box aggregation queries.

Pedersen and Tryfona [59] proposed preaggregation
over spatial data warehouses. They analyze the properties
of topological relationships between two-dimensional spa-
tial objects and show why traditional techniques for
preaggregation will not work on these settings. Preaggrega-
tion is a common technique used to efficiently process
aggregate functions over data warehouses. However, for
preaggregation to work, the spatial properties of the objects
must be distributive over some aggregate function. On
spatial data, some of the topological relationships are not
distributive (e.g., union). To circumvent this problem,
Pedersen and Tryfona presented a methodology to decom-
pose spatial objects in such a way that preaggregation can
be applied.

Using an approach that combines indexing with pre-
aggregation, Papadias et al. presented the Aggregation R-tree
(aR-tree) [56], an R-tree that annotates each MBR with the
value of the aggregate function for all the objects that are

enclosedby it. Therefore, an aggregate querydoes not need to
access all theenclosedobjects sincepart of theanswer is found
in the intermediate nodes of the tree. In this case, preaggrega-
tion is possible because they only consider disjoint spatial
objects. We show an example of the aR-tree in Fig. 2. The
example shown in this figure represents an aR-tree built for
theCOUNT aggregation of the spatial relation given in Table 6.
This table is similar to the examples used by Papadias et al.
[56]. It represents road segments for which we keep track of
the amount of traffic. That is,we count the number of vehicles
per road segment. In Table 6, the spatial attributes of the road
segments are their start and end coordinates ðx1; y1Þ and
ðx2; y2Þ, respectively. The aR-tree has one entry for each road
segment and each entry is annotated with the corresponding
vehicle count. To answer a query, only nodes intersecting the
spatial range given by the query are traversed. Index nodes
that are fully contained by the query range are not traversed.
Instead, only the aggregate information of the node is used.
This process is recursive and it stops once a leaf node is
reached or no index node overlaps the query range.

Zhang and Tsotras presented a set of four optimization
techniques to improve query performance for MIN and MAX

aggregation [90].While some of these optimizations could be
implemented in the aR-tree, they also proposed the Max
R-tree (MR-tree), a data structure explicitly designed to
maintain MIN and MAX aggregates. In later work, Zhang
et al. [91] focusondevelopingefficient solutions to theCOUNT,
SUM, and AVG aggregate functions. Instead of relying on
previous indexing techniques such as the aR-tree, they use
specialized aggregate indexes that incrementally maintain
aggregates. They provide a new approach to reduce
aggregatequeries to thedominance-sumsproblem. Inaddition,
they extend the best known solution to the dominance-sums
problem, the ECDF-tree [5], a static, main-memory data
structure, andmake it dynamic and disk-based (the ECDF-B-
tree). Unfortunately, this data structure cannot efficiently
handle insertionswhen optimized for queries. Theypresent a
solution to this problem by introducing the Box Aggregation
Tree (BA-tree), a data structure that efficiently supports both
insertions and queries.

Lazaridis and Mehrotra proposed a tree structure for
evaluating box aggregate queries in a multidimensional
space containing point data items [45]. Their approach uses
a tree structure called Multiresolution Aggregate tree (MRA-
tree) and their algorithm selectively traverses nodes of this
tree based on reasonable assumptions on which nodes, if
examined, will most likely reduce the uncertainty on the
value of the aggregate. Tree nodes are augmented with
aggregate information for all data points indexed by them.
Tao et al. [75] use a specialized index structure called the
aggregate Point-tree (aP-tree) for evaluating box aggregation
queries over points in two-dimensional space. The intuition
behind the aP-tree is that two-dimensional points can be
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Fig. 2. The aR-tree for COUNT aggregation of Table 6.

TABLE 6
A Sample Spatial Relation



viewed as intervals in the key-time plane and, therefore,
they can be indexed using temporal access methods. A box
aggregation query is reduced to a pair of vertical range
aggregate (VRA) queries, which can be answered in constant
time by the aP-tree. The main advantage of this approach is
that the query cost is independent of the number of objects
contained by the query window.

6 SPATIOTEMPORAL AGGREGATION

An increasing number of applications manage spatiotem-
poral aspects of the real-world. In consequence, we have
observed a growing interest for this kind of application in
the research community. Recent surveys and bibliographic
studies show a large amount of research papers on
spatiotemporal databases [2], [63]. A spatiotemporal object
is an object with both spatial and temporal extent [12], [82].
Not only the spatial extents of these objects can change over
time, but also the values of the explicit attributes describing
nonspatial characteristics of the object may change over
time [35], [78].

There are various approaches to modeling the time-
varying spatial properties of spatiotemporal objects. Some
of them consider objects which observe continuous move-
ment [13], [60], [61], while others consider objects that
change its shape in discrete steps [49], [76], [77]. However,
these modeling approaches only affect how data should be
stored and organized. From a semantic perspective, the
time model adopted is largely irrelevant for the computa-
tion of aggregate functions.

Aggregate queries over spatiotemporal data require the
organization of tuples from a spatiotemporal relation into
collections defined based on their spatial and temporal
extents. Aggregate functions are applied to these collec-
tions. In Sections 4 and 5, we have shown how collections of
tuples are generated based on granularities of the temporal
and spatial domains, respectively. This concept can be
extended to generate collections of tuples based on
spatiotemporal granularities. A spatiotemporal granularity
is a cross product of the spatial and temporal granularities.

6.1 Formal Definition of Spatiotemporal
Aggregation

Different levels of spatiotemporal granularities can be used
to define group, partition, and sliding window composition
in a spatiotemporal relation. In spatiotemporal group composi-
tion, tuples sharing the same spatial and temporal value at
granularity G form a collection termed group. For each
group, an aggregate function is applied and the group is
annotated with the aggregate value. When computing
spatiotemporal aggregation using group composition, the
resulting relation is a spatiotemporal relation defined at
granularity G ¼ GS �GT (i.e., the cross product of spatial
granularity GS and temporal granularity GT ).

Consider a land management application that keeps
track of the forests in the US. In this application, each stored
object is a region (spatial extent) that can change with time
(temporal extent). Forests can change their shape due to
natural phenomena such as wildfires or droughts. In
addition, forest composition is also time-varying because
vegetation changes with the seasons. Information about
spatiotemporal changes in the forest can be obtained by
remote sensors such as theModerate Resolution Imaging Radio

Spectroradiometer (MODIS) [37], [64] aboard the Terra and
Aqua Satellites. This information is available for temporal
granularities as fine as 16 days and spatial granularities of
500 meters [51]. For land management applications, we
might be interested in identifying correlations between
wildfires and forest density. A useful query in this case will
be the following:

Query 7. For every county in the state of Arizona, what has been
the yearly forest density for the last 10 years?

In this case, we are not only interested in knowing the
aggregate value “density,” but also we want to know how
this value changes in time and space. Note that Query 7
refers to the spatiotemporal granularity G ¼ county� year.
The clause “for the last 10 years” is a temporal predicate.
Similarly, the clause “in the state of Arizona” is a spatial
predicate. These predicates are used to select qualifying
tuples. To answer this query, we need to form groups of
tuples sharing the spatial value county and the temporal
value year. Each of these groups is then annotated with
their corresponding aggregate value.

Some queries may require aggregate at a finer level of
detail while still maintaining some data organization at a
higher level. In such a case, spatiotemporal partition composition
and spatiotemporal sliding window composition are required.
Whencomputing spatiotemporal aggregationusingpartition
and sliding window composition, the resulting relation is a
spatiotemporal relation containing one entry for every pair of
spatial and temporal values at granularity J (i.e., the
granularity used for slidingwindowcomposition).However,
each window frame can only contain data valid during a
temporal value at granularity H (the granularity used for
partition composition), J � H.

To illustrate the need for spatiotemporal partition and
sliding window composition, consider the following scenar-
io.Duringyear 2002, the state ofArizona experienced someof
the worst wild fires in its history. By identifying character-
istics of the vegetation (say density) that could have
influenced these wild fires, we might be able to prevent
similar wild fires and minimize ecological and property
damage. What is needed is a fine-grained analysis of the
forest properties such that particular places (say lodging
cabins) can be evacuated or measures taken to prevent
wildfires. At the same time, we want to perform this analysis
within human-defined spatial boundaries (say a county) to
notify the proper authorities. At the same time, we need to
know how the vegetation changes over time. In addition, for
every region under analysis, we might want to consider the
conditions of neighboring regions (i.e., it does not help to
clean a particular property within an acre of land free of trees
if it is surrounded by a dense forest; the property is still likely
to suffer fire damage). For this application, the following
query might provide useful information.

Query 8. For every square kilometer in every county in the state
of Arizona, what has been the density of the forest for this
year? For each square kilometer, consider neighboring regions
up to 2 km on each direction (north, south, east, and west). For
obtaining the density, consider the current and next oldest
MODIS observation.

This query is expressed using two granularities, H ¼
county� year and J ¼ km2 � ð16-dayÞ. The clauses “in the
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state of Arizona” and “for this year” are spatial and
temporal predicates for selecting qualifying tuples. To
answer Query 8, we need spatiotemporal partition compo-
sition using a spatial granularity at the county level and
temporal granularity in years (however, only one year is of
interest). Within each partition, we define spatiotemporal
sliding window composition using spatial granules of
1 square kilometer and temporal granules of 16 days (i.e.,
the finest temporal granularity in the data set). The
aggregate function is applied to the set of tuples occurring
within the limits of each spatiotemporal window. In this
case, the window is 5� 5 km by two 16-day temporal
granules (i.e., current and previous).

6.2 Existing Approaches for Evaluating
Spatiotemporal Aggregate Queries

A typical spatiotemporal query specifies spatial and
temporal predicates to select tuples of interest. A spatial
predicate is defined in terms of a point or an extent, while a
temporal predicate can involve a time instant or a time
interval [49], [73]. Algorithms proposed for the evaluation
of spatiotemporal aggregation queries seem to concentrate
in a generalization of the box aggregation problem
presented in Section 5. In this case, the query box is
extended with a temporal interval. Given a spatial range
and a temporal interval, the query returns summarized
information of all the tuples valid during the time interval
and that are contained or intersected by the query range.
Alas, the evaluation of this type of queries does not result in
a spatiotemporal relation.

The evaluation of spatiotemporal aggregation queries has
only recently caught the attention of the research community.
Here, we present, in chronological order, four different
approaches for the evaluation of these queries proposed in
the last three years. All these methods are based on a disk-
based data structure that stores some precomputed values
that are used for answering the queries. Therefore, they all are
indexed evaluation algorithms.

Zhang et al. [89], [87] proposed an extension to their
approach for computing aggregates over data streams to
handle spatiotemporal data. This approach, based on
multiple granularity levels was described in Section 4 and
we omit further details here. Papadias et al. [57] proposed
an index-based approach in which they group spatial
objects into static regions and index these regions using
an R-tree. Each region represented in the R-tree is annotated
with aggregate information over all the timestamps in the
base relation. In addition, for every region represented in
the R-tree, the proposed data structure maintains a B-tree
that contains time-varying aggregate data about the region.
This data structure is called the aggregation RB-tree (aRB-
tree) and can be extended to handle the case when objects
are grouped into dynamic regions, resulting in the aggrega-
tion Historical RB-tree (aHRB-tree) or the aggregate three-
dimensional R-B-tree (a3DRB-tree).

One drawback of Papadias et al.’s aRB-tree is the distinct
counting problem. This problem occurs if a data object remains
in the query region for several timestamps during the query
interval because such data object will be counted multiple
times [72]. Tao et al. [72] recognize the distinct count problem
within the aRB-tree and presented an approximate approach
to evaluating distinct COUNT and distinct SUM aggregate
queries. Their approach is based on sketches and an sketch
index, similar in structure to the aRB-tree.

Another approach for the approximate evaluation of
spatiotemporal aggregate queries was proposed by Sun et al.
[71]. They consider a data model in which moving objects
continuously generate large amounts of spatiotemporal
information in the form of data streams. Until an object
transmits a new location, it is assumed to be in the last
recorded position. Space is partitioned in a two-dimen-
sional grid of w� w regular cells, where w is a constant
called resolution. Each cell is associated with the number of
objects (at present time) in its extent. Sun et al.’s approach
can answer approximate queries to the COUNT aggregate
based on a data structure termed Adaptive Multidimensional
Histogram (AMH), which is updated every time an object
transmits a new position. The AMH can only be used for
answering snapshots aggregate queries [71].

7 RESEARCH OPPORTUNITIES

We have observed that the proposed algorithms for the
evaluation of temporal, spatial, and spatiotemporal aggre-
gation rely on some form of preaggregation. That is, they
precompute results for a particular set of qualifying tuples
and keep the summarized information in a hierarchical data
structure. To evaluate a query, the data structure is
traversed and the values found at different levels of the
hierarchy are combined to obtain the query result. While
these approaches are efficient, they can only answer
aggregate queries for a specific set of tuples. It is not clear
whether these approaches can be easily modified to handle
aggregate queries with arbitrary predicates. Different
predicates will select different set of tuples. rendering
previous precomputed values useless. We consider extend-
ing these approaches for handling arbitrary predicates an
interesting research problem.

Another research opportunity we have identified has its
basis in the fact that only a small number of the proposed
approaches were designed for the evaluation of sequenced
aggregate queries (i.e., the query result is a relation of the
same nature as the base relation). This opportunity is more
evident for spatial and spatiotemporal databases. For these
cases, the proposed approaches focus on the box aggrega-
tion problem. After applying spatial and temporal pre-
dicates for selecting tuples, the spatial and temporal
properties of the qualifying tuples are ignored. We should
note that we can still evaluate sequenced aggregate queries
using box aggregation. For instance, we could issue a box
query for every time and space value at the desired
granularity, then combine the individual results. However,
such an approach would not be very efficient. In addition,
problems such as the distinct count problem mentioned by
Tao et al. [72] would have not arisen if the temporal
properties of the selected tuples had been preserved and
considered while computing the aggregation.

When comparing the proposed approaches to our model,
we realize the need for algorithms that evaluate spatiotem-
poral aggregate queries performing spatiotemporal group
and partition composition. Current approaches for evaluat-
ing spatiotemporal aggregation do not offer support for this
kind of queries. Queries such as Query 7 and Query 8, for
example, cannot be evaluated by the surveyed techniques.
Nor can these techniques evaluate Queries 5 and 6.

As we have mentioned before, the existing approaches
for the efficient evaluation of temporal, spatial, and
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spatiotemporal aggregate queries rely on preaggregation.
Preaggregation is not useful if the aggregate functions in the
query are nondistributive (e.g., MEDIAN); we need to
develop algorithms for the efficient evaluation of this type
of aggregate functions for spatiotemporal data.

8 CONCLUSION

In this paper, we have studied the most relevant techniques
for the evaluation of aggregate queries on spatial, temporal,
and spatiotemporal data. We have also presented a model
that reduces the evaluation of aggregate queries to the
problem of selecting qualifying tuples and grouping these
tuples into collections on which an aggregate function is to
be applied. This model gives us a framework that allows us
to analyze and compare the different existing techniques for
the evaluation of aggregate queries. At the same time, it
allows us to identify opportunities of research on types of
aggregate queries that have not been studied.

Algorithms for the evaluation of aggregate queries can

be classified as either nonindexed or indexed. Nonindexed

algorithms need to scan the base relation every time the

query is issued. During this scan, aggregate values are

incrementally computed. Indexed algorithms, on the other

hand, rely on annotated disk-based data structures. These

structures provide sufficient information for computing

aggregates while not requiring the evaluation algorithm to

explore every qualifying object in the base relation.
As we have indicated, most of the existing approaches for

the evaluation of temporal, spatial, and spatiotemporal
aggregate queries rely on some form of preaggregation.
Hence, they only consider distributive aggregate functions
such as COUNT, SUM, and MAX. Efficient methods for
computing nondistributive aggregate functions such as
MEDIAN, MODE, or RANK should be proposed. This issue has
recently been addressed for traditional databases by Palpa-
nas et al. [55]. They propose a general incremental main-
tenance mechanism that applies to all aggregate functions.

We note that sequenced aggregate queries have not been
addressed for spatial and spatiotemporal databases. A
sequenced temporal query is one that is effectively
evaluated at every granule in time, resulting in a temporal
relation [68]. Sequenced temporal aggregation can be
evaluated using Definitions 3 and 4. We can extend this
term and define a sequenced query as one resulting in a
relation of the same type as the base relation. Sequenced
spatial aggregation can be evaluated using Definitions 5
and 6. It is important that we evaluate an aggregate function
without ignoring the spatial and temporal characteristics of
the data. This is a critical issue because it is important that
we know both the spatial and temporal properties of
aggregate values. For example, consider a weather mon-
itoring application keeping track of a hurricane. In such
applications, it is not only of interest to know the maximum
speed of the wind, but also when and where such strong
wind is expected.
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