
Supporting Valid-Time Indeterminacy

CURTIS E. DYRESON
Aalborg University
and
RICHARD T. SNODGRASS
The University of Arizona

In valid-time indeterminacy it is known that an event stored in a database did in fact occur,
but it is not known exactly when. In this paper we extend the SQL data model and query
language to support valid-time indeterminacy. We represent the occurrence time of an event
with a set of possible instants, delimiting when the event might have occurred, and a
probability distribution over that set. We also describe query language constructs to retrieve
information in the presence of indeterminacy. These constructs enable users to specify their
credibility in the underlying data and their plausibility in the relationships among that data.
A denotational semantics for SQL’s select statement with optional credibility and plausibility
constructs is given. We show that this semantics is reliable, in that it never produces incorrect
information, is maximal, in that if it were extended to be more informative, the results may
not be reliable, and reduces to the previous semantics when there is no indeterminacy.
Although the extended data model and query language provide needed modeling capabilities,
these extensions appear initially to carry a significant execution cost. A contribution of this
paper is to demonstrate that our approach is useful and practical. An efficient representation
of valid-time indeterminacy and efficient query processing algorithms are provided. The cost of
support for indeterminacy is empirically measured, and is shown to be modest. Finally, we
show that the approach is general, by applying it to the temporal query language constructs
being proposed for SQL3.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design; Data
models; H.2.3 [Database Management]: Languages; Query languages; H.2.4 [Database
Management]: Systems; Query processing

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Incomplete information, indeterminacy, probabilistic
information, SQL, temporal database, TSQL2, valid-time database

Authors’ addresses: C. E. Dyreson, Department of Computer Science, Aalborg University,
Aalborg Øst, Denmark; email: curtis@cs.auc.dk; R. T. Snodgrass, Department of Computer
Science, The University of Arizona, Tucson, AZ 85721; email: rts@cs.arizona.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 0362-5915/98/0300–0001 $5.00

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998, Pages 1–57.

1. OVERVIEW

Most databases record the history of an enterprise. Such databases associ-
ate with each event a timestamp indicating when that event occurred.
Often, a user knows only approximately when an event happened. For
instance, she may know that it happened “between 2 PM and 4 PM,”
“sometime last week,” or “around the middle of the month.” These are
examples of valid-time indeterminacy. Information that is valid-time inde-
terminate can be characterized as “don’t know when” information, or more
precisely, “don’t know exactly when” information. This kind of information
has various sources, including the following.

● Granularity mismatch—In many cases the granularity with which data
is recorded is finer than the precision to which the occurrence time of an
event is known. For example, an occurrence time known to within one
hour, recorded on a system with timestamps in the granularity of a
second, happened sometime during that hour, but during which second is
unknown.

● Dating techniques—Many dating techniques, such as Carbon-14 dating
[Goudsmit and Claiborne 1966], are inherently imprecise.

● Uncertainty in planning—Projected completion dates are often inexactly
specified, e.g., the project will complete three to six months from now.

● Unknown or imprecise event times—In general, occurrence times could be
unknown or imprecise. For example, perhaps we do not know when a
student in the first grade was born. The student’s date of birth could be
recorded in the database as either unknown (she was born between the
beginning and the end of time) or imprecise (she was born between five
and seven years ago).

● Clock measurements—Every clock measurement has some imprecision
[Petley 1991].

This paper adds valid-time indeterminacy to SQL [Melton and Simon
1993]. We identified several design goals to be met in extending SQL with
indeterminacy. First, we wanted the syntactic extensions to be minimal,
yet highly expressive. Timestamps should include a representation for
valid-time indeterminacy and users should be able to control, via query
language constructs, the amount of indeterminacy present in derived
information. Second, we wanted the extensions to be upwardly compatible
with SQL. In the absence of valid-time indeterminacy, the syntax and
semantics should reduce to that of SQL. Third, the semantics should be
simple and intuitive. In particular, information should not be “invented”
during queries. And finally, it was critical that valid-time indeterminacy
have little impact on the performance of the DBMS, either in space to store
indeterminate timestamps or in query evaluation time.

Unfortunately, these design goals conflict, as discussed further in Section
11. Earlier work required a three-valued [Snodgrass 1982] or four-valued

2 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

logic [Schiel 1987]. Probabilistic approaches (e.g., Barbará et al. [1992]) are
highly expressive, but have a query evaluation cost that is proportional to
the number of probable alternatives. The number of such alternatives can
easily number in the millions for a single indeterminate time, and thus
probabilistic approaches are impractical if directly applied in a temporal
context. More recent work models indeterminacy by using a constraint
network. At best, using a restricted network, query evaluation complexity
has been shown to be cubic [Brusoni et al. 1995] in the number of
constraints. Our approach uses probabilistic weights, yet achieves a linear
query evaluation complexity, with a nominal increase in storage cost.

The next section introduces an example requiring the storage of valid-
time indeterminate information; this example is used throughout the
paper. We then examine the representation of valid-time indeterminacy.
After that, we explore what it means to retrieve information from a
database with valid-time indeterminacy. We outline syntactic and semantic
extensions to SQL to support retrieval of valid-time indeterminate informa-
tion, and argue their correctness. We then show how valid-time indetermi-
nacy can be implemented. Although retrieving valid-time indeterminate
information may appear to be expensive, we demonstrate that an efficient
implementation exists. The final sections apply these same notions to a
temporal query language, trace related work, summarize our approach, and
discuss future work. Proofs for all theorems can be found in the Appendix.

2. MOTIVATING EXAMPLE

An example database is shown in Figure 1. This database models a single
company with two warehouses and one airplane factory. The warehouses
supply parts to the factory. Each warehouse keeps a Sent relation, which
records when parts were shipped from the warehouse to the factory.
The factory maintains the In_ Production relation, which is a production
history of airplanes built by the factory. This relation includes a period
timestamp1; the previous two relations include instant timestamps. For
each relation, we assume an underlying timestamp granularity of one day.2

Valid-time indeterminacy naturally arises in both base relations and
derived relations. The During attribute of the In_ Production base relation
is an indeterminate period. This is because the granularity of the In_
Production relation is a month. A month is an indeterminate value that
represents a set of possible days. Production on an airplane started on some
day in the indicated month, but we cannot be sure which one. For example,
production on the Centurion with serial number AB33 started sometime
between (inclusive) March 1 and March 31. For this example we assume

1This paper uses the SQL/Temporal term period [Melton 1996] to denote an anchored duration
of time, e.g., the year 1995, in the same way that interval is used in SQL to denote an
unanchored duration of time, e.g., one year, in place of the term interval [Jensen et al. 1994],
which appears more commonly in the literature.
2 For expository purposes only, we adopt a non-SQL format for temporal constants, e.g., May 1
rather than 1996-05-01.

Supporting Valid-Time Indeterminacy • 3

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

that production is equally likely to have started or ended during any day in
an indicated month, although in general we allow nonuniform likelihoods.

The Received relation is not maintained by either the factory or a
warehouse; rather it is a derived relation, the product of educated guess-
work. Parts are shipped by truck from a warehouse and arrive at the
factory no earlier than 4 and no later than 24 days after they leave a
warehouse. The Received relation is computed from each warehouse’s Sent
relation by adding a 4–24 day “fudge factor” to the When attribute. The
valid times in the Received relation are indeterminate; that is, we know
roughly when the parts were received, but do not know exactly which day
they were received. We assume that each day in the recorded range of days
is equally likely. For example, the batch of engines received from the
Boeing warehouse arrived on one of the days in the set {June 8, June 9, ...,
June 27}, but we have no reason to favor one day over another. (The ei to
the right of each instant is for expository purposes only; it is a short label
for the instant that is used in other sections of the paper.)

Queries can make use of indeterminate information in the database.
Suppose that a few of the Centurion airplane owners report a faulty wing
strut. Naturally, we would like to query the database to determine which
warehouse(s) supplied the defective parts and, specifically, which lots are
implicated (we give such a query in Section 4). In SQL with valid-time

Fig. 1. An example database.

4 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

indeterminacy, we could query to determine which shipment of wing struts
“overlaps” the production of a Centurion airplane. Overlap is the operation
of temporal intersection.

There are two well-defined limits on an answer to a query in an
incomplete information database: the definite answer and the possible
answer [Lipski 1979]. The definite answer is the information that satisfies
the query in all possible extensions of the database, while the possible
answer is the information that satisfies the query in some possible exten-
sion of the database (we formalize these bounds in Section 5.3). For
example, consider a temporal selection on the Received relation in Figure 1
that selects those parts received prior to June 10. Even though the exact
date the shipment of lot number 23 from the Boeing warehouse arrived is
unknown, it is clear that this shipment arrived before June 10 (the
shipment arrived on some day in the set {May 10, May 11, . . . , May 29}).
This tuple, and no other, is in the definite answer to the query. Lot number
30 from the Cessna warehouse is in the possible answer to the query. It is
possible that this shipment arrived prior to June 10 (and also possible that
it did not). Similarly, lot number 24 from the Boeing warehouse possibly
arrived prior to June 10. The first shipment from the Boeing warehouse is
also in the possible answer because a definite answer is also a possible
answer, but not vice-versa.

Between the possible and definite limits lie other answers. For instance,
assume that it is equally likely for each day in {June 8, June 9, . . . , June
27} that lot number 24 arrived. For the shipment to have arrived prior to
June 10, it had to arrive on either June 8 or June 9. If all the days are
considered to be equally likely, then there is a probability of only 0.10 (2
chances out of 20) that the the shipment was received prior to June 10. So
it is improbable that lot number 24 arrived prior to June 10. However, it is
probable that both lot number 30 (0.55 probability, 11 chances out of 20)
and lot number 23 did arrive (1.00 probability). The definite, possible, and
“probable” answers to the temporal selection are shown in Figure 2. (There

Fig. 2. Answers to example queries.

Supporting Valid-Time Indeterminacy • 5

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

is a detailed example of obtaining a “probable” answer for a query in
Section 5.7.) If the query language can make use of a probability distribu-
tion over the possible times associated with an indeterminate instant, a
“richer” query language results, one not restricted to the definite and
possible answers. The richness of the query language, however, must not
compromise efficient implementation nor detract from the intuitiveness of
the language.

There are two stages to determining an answer to a query. The first
retrieves the data that is relevant to the query. The second stage constructs
an answer that satisfies the conditions specified in the query. We provide
separate controls on the indeterminacy for each stage.

Correlation credibility (potentially) changes the information available to
query processing by replacing each indeterminate time value with a rele-
vant determinate time value. A typical replacement is the expected value or
probabilistic mean. For example, the expected start of production for the
Centurion with serial number AB33 is March 15 (the expectation of the
uniform distribution over a sequence of values is the half-way point in that
sequence). In SQL with indeterminacy, the user can express this preference
by selecting an appropriate correlation credibility value. The chosen corre-
lation credibility potentially modifies every time value in the associated
relation, removing indeterminacy.

Ordering plausibility controls the construction of an answer to the query.
For instance, a Centurion owner could query which shipment of wing struts
plausibly arrived during production of his or her plane. Intuitively, such a
query relaxes the constraints on the relationship between the production
times and the day a shipment was received from “do they definitely
overlap?” to “is it probable that they overlap?” or perhaps to “is it even
remotely possible that they overlap?” The user selects the kind of overlap
that she or he requires by setting an appropriate ordering plausibility
value. It is probable that lot number 31 from the Cessna warehouse was
received during production of the Centurion with serial number AB33, but
one cannot be absolutely sure that it did.

There is a natural division between indeterminacy in the data and
indeterminacy in the query. The support for valid-time indeterminacy that
we add to SQL allows the user to control both. Correlation credibility
replaces indeterminacy in the data, while ordering plausibility governs the
probability of relationships among the data.

3. EXTENDING THE DATA MODEL WITH INDETERMINACY

In this section we discuss how to represent indeterminate instants, periods,
and intervals in the data model. In Section 7 we discuss how these
representations are implemented.

3.1 Model of the Time-Line

We briefly summarize the simple, standard model of time that we adopt for
this paper. The model is presented in detail elsewhere [Dyreson et al.
1995].

6 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Time has a standard geometric metaphor, in which time itself is a line
segment (assuming a bounded universe); a point on the time-line is called
an instant; the time between two instants is known as a time period (period
for short); and a length, or unanchored segment, of the time-line is an
interval. The time-line segment is partitioned into a finite number of
smaller segments, each called a chronon [Ariav 1986; Clifford and Rao
1987; Jensen et al. 1994]. A chronon is the smallest amount of time that
can be represented in the implementation. The chronons are consecutively
labeled with the integers in the sequence 0, . . . , N, where N is the
number of values that a timestamp can represent.

3.2 Indeterminate Instants

An instant is determinate if it is known when (i.e., during which particular
chronon) it is located. Often, however, we do not know the exact chronon
during which an instant is located; instead, we only know that the instant
is located sometime during a set or range of chronons. We call such an
instant an indeterminate instant.

An indeterminate instant is described by a lower support, an upper
support, and a probability mass function (p.m.f.) [Dyreson and Snodgrass
1993]. The supports are chronons that delimit when the instant is located;
the instant is no earlier than during the lower support and no later than
during the upper support. Between the supports lies a period of indetermi-
nacy. The period of indeterminacy is a contiguous set of possible chronons.
The instant is located during some chronon in this set, but which chronon
is unknown. We denote a set of possible chronons that extends from the
lower support, a*, to the upper support, a*, using the notation a* ; a*, e.g.,
May 10 ; May 29.

3.2.1 Probability Mass Function. Although an indeterminate instant is
located during some possible chronon, not all the possible chronons are
equally likely. For example, it could be that the instant is most likely
located during the earliest chronon in the period of indeterminacy. The
probability mass function gives the probability of each chronon. The
probability mass function, Pa, for the indeterminate instant a is

Pa~i! 5 Pr@a 5 i# i { $0,1, . . . , N%

where Pr@a 5 i# is the probability that the instant is located during
chronon i. Since the instant is not any time outside the period of indeter-
minacy, Pr@i , a*# 5 0 and Pr@i . a*# 5 0. All indeterminate instants
are considered to be independent, that is,

Pr@a 5 i ∧ b 5 j# 5 Pr@a 5 i# 3 Pr@b 5 j#.

Like most other probabilistic approahes in databases [Barbará et al. 1990;
1992; Dey and Sarkar 1996; Cavallo and Pittarelli 1987; Fuhr and Rölleke
1997; Gelenbe and Hebrail 1986; Kornatzky and Shimony 1993a; 1993b;

Supporting Valid-Time Indeterminacy • 7

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Zimányi 1992] no provisions are made for joint or dependent probabilities.
An indeterminate instant, a, is denoted using the notation (a* ; a*, Pa).

3.2.2 Mass Function Sources. The probability mass function for an
indeterminate instant is supplied when the instant is created. In many
common cases the probability mass function for an indeterminate instant
stems from the source of the indeterminacy (the list below is not exhaus-
tive).

● Granularity mismatch—The uniform or equiprobable mass function is a
useful assumption. For example, an instant known to within one hour
and recorded on a system with timestamps in the granularity of a second
happened sometime during that hour, but during which particular sec-
ond is unknown, and there is no a priori reason to favor one second over
another.

● Dating techniques—A property of radioactive dating techniques is that
the estimate is described by a normal, ‘‘bell-shaped curve’’ distribution.

● Uncertainty in planning —Analysis of past data (the past data may be
readily available in a temporal database) can sometimes provide a good
indicator of future performance. For instance, we may not know exactly
when an airline will depart. However, an analysis of past departure
times for that route, type of airline, and day of the week (the analysis
could be much more elaborate) may show that this flight tends to leave
later than scheduled. Based on this analysis, a ‘‘probably late’’ distribu-
tion could be used for the departure time of that flight.

● Unknown or imprecise instants—Typically, if the location of an instant is
unknown, the distribution is also unknown. In these situations a user
can specify that the distribution is missing; see below.

● Clock measurements—Clock-specific distributions model the imprecision
of specific clock measurements [Petley 1991].

Dey and Sarkar [1996] provide several additional means of determining the
underlying mass function.

In some cases a user just may not know the underlying mass function
because that information is unavailable or the mass function might exceed
the implementation capacities of the system (Section 8 describes the
implementation and the constraints it imposes on mass functions). In such
cases the distribution can be specified as missing. A distribution that is
missing represents a complete lack of knowledge about the distribution. It
is a kind of second-order incompleteness, that is, the distribution that is
missing is incomplete information about indeterminate information. Unlike
some other probabilistic data models [Barbará et al. 1990; 1992], we do not
allow partially known distributions.

While the terminology introduced so far suggests a difference between
indeterminate and determinate instants, it is instructive to note that an
indeterminate instant can be used to model a determinate instant. A

8 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

determinate instant can be modeled by an indeterminate instant with a
singleton set of possible chronons. A determinate instant records that an
instant is located sometime during a particular chronon. Without loss of
generality, we assume that a determinate instant represents any real-
world instant during a chronon. Hence, at an abstract level, the exact
real-world instant modeled by a determinate instant is never precisely
known. At best, only the chronon during which it is located is known.

3.3 Indeterminate Periods and Intervals

A determinate period is the time between two determinate instants.3

A period bounded by indeterminate instants (called the starting and
terminating instants) is termed an indeterminate period [Dyreson 1994]. An
indeterminate period could start during any member of the set of possible
chronons of the starting instant. Likewise, the indeterminate period could
end during any member of the set of possible chronons of the terminating
instant. Since the location of the starting and terminating instants are
known only imprecisely, it follows that it is unknown precisely when an
indeterminate period begins or ends. We assume that the starting instant
must come before the terminating instant in the period, that is, the
bounding instants can overlap on at most a single chronon.4

A determinate interval is a precisely known duration of time, e.g., six
days, and is represented as a count of chronons. An indeterminate interval,
on the other hand, is an imprecise duration that describes a set of possible
durations. An indeterminate interval is represented by an imprecise num-
ber of chronons, e.g., ‘‘from two to three chronons.’’ The representation of an
indeterminate interval has an associated probability mass function that
gives the likelihood of each possible duration.

We now turn from the data model to the query semantics.

4. SYNTACTIC EXTENSIONS TO SQL

In this section, we summarize the syntactic extensions to SQL to support
the storage and retrieval of valid-time indeterminate information from a
database. Full coverage of the syntactic extensions can be found elsewhere
(with slight modifications) [Dyreson and Snodgrass 1995b; Snodgrass
1995]. In the next section, we provide a formal semantics for these
constructs. We separate the syntax from the semantics to emphasize that
the syntactic extensions are minor.

Four syntactic extensions to SQL are needed to support valid-time
indeterminacy: (1) to indicate that a temporal attribute is indeterminate,

3While the period data type is not in SQL-92 [Melton and Simon 1993], it is included in the
SQL/Temporal part of SQL3 [Melton 1996]. In our model of time, it is represented by a
sequence of chronons, denoted by the starting and terminating chronons in the sequence.
4In a temporal query language (see Section 10), this assumption can be relaxed. Periods are
dynamically constructed from a pair of underlying instants, which may overlap, by a period
constructor during a query. The period constructor can check to ensure that the starting
instant is before the terminating instant to the specified plausibility and credibility values.

Supporting Valid-Time Indeterminacy • 9

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

(2) to specify the correlation credibility, (3) to specify the ordering plausi-
bility, and (4) to indicate that a temporal literal is indeterminate.

The first syntactic extension, to indicate that an attribute is indetermi-
nate, involves schema specification statements. In the create table state-
ment, a user may add either the modifier INDETERMINATEor INDETERMI-
NATE COMPACTbefore an instant, period, or interval attribute specification
to specify that the value may be indeterminate. The two modifiers toggle
between alternative storage strategies for indeterminate timestamps, dis-
cussed in Section 7 (the compact version is a less expressive, smaller
timestamp). We also add an optional ‘‘with’’ phrase to the end of an
attribute’s specification to allow the user to specify standard or nonstand-
ard mass functions. These two categories of mass functions are also
discussed in Section 7 (the standard functions have a more compact
representation). The default is WITH STANDARD DISTRIBUTION. For peri-
ods, modifiers apply to both bounding instants in the period. Consistent
with SQL’s handling of NULL values, an indeterminate temporal attribute
may not be included in a key. We provide clauses to the alter table
statement that allow any of these aspects to be changed. Below are some
examples of the extended create table and alter table statements that
describe the relations given in Figure 1.

CREATE TABLE Received(Warehouse CHARACTER(30),
Lot_Num INTEGER,
Part CHARACTER(40),
When INDETERMINATE DATE);

CREATE TABLE In Production(Model CHARACTER(30),
Serial_Num CHARACTER(10),
During INDETERMINATE PERIOD(DATE));

ALTER TABLE Received ALTER COLUMN When
TO NONSTANDARD DISTRIBUTION;

The second syntactic extension supports correlation credibility. The from
clause in the select statement declares the relations over which the query is
to be evaluated and associates correlation name(s) to each relation. The
correlation credibility is denoted via a WITH CREDIBILITY phrase. Credi-
bility is a replacement strategy for each indeterminate instant, interval,
and period–bounding instant in the correlated relation. The credibility
phrase sets the credibility to one of four possible strategies below.

1. INDETERMINATE—Retain all indeterminacy; do not replace any time
values.

2. EXPECTED—Replace each indeterminate time value with the expected
value, i.e., the probabilistic mean. This will compute the expected result
for a query.

3. MAX—Replace each indeterminate time value with the lower support
(except for an instant that starts a period, in which case use the upper
support). For periods, this value eliminates all the indeterminacy. For
instants, it uses the earliest possible instant; while for intervals, the

10 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

shortest possible interval is chosen. Intuitively, this option “maximizes
determinacy” ; credibility is at a maximum when the indeterminacy is at
a minimum.

4. MIN—Replace each indeterminate time value with the upper support
(except for an instant that starts a period, in which case use the lower
support). For periods, this value converts all the indeterminate informa-
tion to determine information. For instants, it chooses the latest possible
instant; while for intervals, the longest possible interval is used. Intu-
itively, this option “minimizes determinacy” ; credibility is at a minimum
when indeterminacy is at a maximum.

The credibility phrase is optional and has an initial default value of
INDETERMINATE. The default value can be changed using a SET DEFAULT
CREDIBILITY statement. This support for credibility simplifies that de-
scribed elsewhere [Dyreson and Snodgrass 1993; Dyreson 1994; Dyreson
and Snodgrass 1995b].

The third syntactic extension concerns ordering plausibility. The order-
ing plausibility is the plausibility in the where predicate among the
instants, periods, and intervals that participate in the predicate. The
default ordering plausibility is specified using a SET DEFAULT PLAUSIBIL-
ITY statement. The default ordering plausibility can be overridden in a
select statement by appending a WITH PLAUSIBILITY phrase to the end of
the where clause. The ordering plausibility is an integer value between 1
and 100 (inclusive), and has an initial default value of 100. An ordering
plausibility of 1 indicates that any possible answer is desired (i.e., the
where predicate can be satisfied by any possible extension); an ordering
plausibility of 100 requests the definite answer (i.e., the where clause must
be satisfied by all possible extensions).

The final syntactic extension is to support indeterminate temporal liter-
als. All indeterminate literals follow the convention that that we have used
heretofore in this paper, namely, indeterminate time is represented as a
range of times separated by a ’ ; ’ , e.g., DATE ’5/10/1997
; 5/29/1997’ represents the indeterminate instant May 10, 1997 ;
May 29, 1997 . A probability mass function can be named in the literal,
e.g., DATE ’5/10/1997 ; 5/29/1997 UNIFORM’ represents an instant
with a uniform probability mass function; the default probability mass
function is missing.

An example query illustrating the various constructs is shown in Figure
3. Intuitively, the query determines, within the specified plausibility and
credibility levels, which wing strut shipments were received during produc-
tion of each Centurion. The from clause specifies that all information,
regardless of its credibility, from the In_Production relation should be used
(via the specified credibility of INDETERMINATE). The where clause selects
pairs of Centurion and wing strut tuples that overlap with a plausibility of
60. Finally, the target list determines when the shipment of possibly
defective parts was received. When this query is applied to the database

Supporting Valid-Time Indeterminacy • 11

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

shown in Figure 1, the relation shown in Figure 4 is computed. In Section
5.7, we discuss in detail how this query is evaluated to obtain the indicated
result.

5. SEMANTIC EXTENSIONS TO SQL

In this section, we extend the semantics of SQL to support indeterminacy.
The presentation focuses on SQL’s select statement. We first provide a brief
review of the semantics of the select statement. We then extend the
semantics to support indeterminacy. The evaluation of a select in the
extended semantics has a possible and a definite interpretation, as well as
other interpretations that lie between those bounds. We show that the
possible interpretation is both reliable , in that it does not invent informa-
tion, and maximal, insofar as it cannot be strengthened to produce more
results. However, the indeterminate semantics does not demonstrate that
indeterminacy can be efficiently implemented. Consequently, we introduce
an operational semantics. The operational semantics provides all the
necessary support for indeterminacy with three changes to the SQL seman-
tics. First, it redefines the temporal ordering relation, Before. Second, it
introduces a 4-sorted domain for the evaluation of where clause predicates.
And third, it adds a Replace operator to effect correlation credibility. Each
of the changes incorporates the determinate semantics (as the default).
Hence, the semantics of existing queries is left unchanged. We show that
operational semantics correctly implements indeterminate semantics.

5.1 Review of SQL Semantics

In this section, we present a simplified semantics for the select statement.
Our goal is to highlight those aspects of the statement that will be
impacted by valid-time indeterminacy, a theme that we develop in subse-
quent sections.

Fig. 3. An example query.

Fig. 4. Result of the example query.

12 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

We use the notation, vxbSQL, to denote the meaning of the syntactic SQL
construct x. The top-level of denotational semantics for the select state-
ment, applied to a database d, is given below.

vSELECT ^target list& FROM^from list& WHERÊpredicate&bSQL~d!

5 v^target list&bSQL~vWHERE^predicate&bSQL~v^from list&bSQL~d!!!

The select statement first applies the from clause to the database. This
clause computes the Cartesian product of the relations specified in the
^from list&. The meaning of the from clause is

v^from list&bSQL~d! 5 v^relation1&, . . . , ^relationn&bSQL~d!

5 v^relation1&bSQL~d! 3 . . . 3 v^relationn&bSQL~d!

where

v^relation&bSQL~d! 5 ri, ri { d, and ri is named ^relation&.

The result computed by the from clause, an intermediate relation r, is then
used as an argument for the where clause. This clause selects those tuples
that satisfy the predicate in the where clause.

vWHERÊpredicate&bSQL~r! 5 $tt { r ∧ v^predicate&bSQL~t!%.

Note that the correlation names appearing in ^predicate& need to be
mapped to the attributes in the tuple t. This is generally done by passing
the symbol table as a second argument to vbSQL. For simplicity, we omit that
argument. We restrict the presentation to predicates that are logical
formulas constructed from comparison operations and Boolean connectives,
and rely on the readers’ background knowledge of SQL to supply the
meaning of each SQL ^predicate&, i.e., the standard Boolean logic applies:

v^predicate& AND ^predicate&bSQL~t! 5

v^predicate&bSQL~t! ∧ v^predicate&bSQL~t!.

In the final step, the output of the where is projected onto the desired
domains specified by the ^target list&.

v^target list&bSQL~r! 5 pvtarget listbSQL~r!.

Here we also ignore the mapping of correlation names to attributes of r.

5.2 Supporting Syntactic Extensions

Since the current SQL semantics does not support indeterminacy, the
extended syntax can only be supported in a new, extended semantics,

Supporting Valid-Time Indeterminacy • 13

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

which we denote vb ind. The extensions presented in Section 4 include two
additional controls on indeterminate information: correlation credibility
and ordering plausibility. These values appear as additional parameters, d

and g, respectively, to vb ind. Both values can be specified using SET
DEFAULT statements.The meanings of the SET DEFAULTstatements are
given below. Assume S is any SQL statement.

vSET DEFAULT CREDIBILITY d9; Sbind~d, g, d! 5 vSbind~d, g, d!

vSET DEFAULT PLAUSIBILITY g9; Sbind~d, g, d! 5 vSbind~d, g9, d!

The default values can be overridden within the select statement itself. We
show here how to override the plausibility default and in Section 5.6 how to
override the credibility default.

vSELECT ^target list& FROM^from list&

WHERE^predicate& WITH PLAUSIBILITY g9bind~d9, g, d! 5

vSELECT ^target list& FROM^from list& WHERE^predicate&bind~d, g9, d!

The initial default credibility is INDETERMINATEand initial default plausi-
bility is 100.

5.3 An Overview of Indeterminate Semantics

In this section, we give an overview of indeterminate semantics and discuss
several properties that a semantics involving incomplete information
should possess. In later sections, we show that our semantics does indeed
have these essential properties.

The indeterminate semantics for the select statement is outlined below.
This semantics has the same structure as SQL semantics.

vSELECT ^target list& FROM^from list& WHERE^predicate&bind~d, g, d!

5 v^target list&bind~g, vWHERE^predicate&bind~g, v^from list&bind~d, d!!!

SQL and indeterminate semantics differ in two ways. First, the indetermi-
nate semantics has additional parameter(s), but note that d is utilized in
the where predicate and target list only. Second, the select statement has a
different meaning in the indeterminate semantics. Let us consider what the
meaning should be, intuitively.

A select statement applied to a database containing only complete
information and evaluated under SQL semantics has a single interpreta-
tion. In contrast, a retrieval from a database containing incomplete infor-
mation has at least two interpretations. One interpretation is that the
query selects information that possibly matches the retrieval constraints.
The second interpretation is that the query selects information that
definitely matches the retrieval constraints. Which interpretation is
adopted is specified by the user via syntactic constructs in the query. It is

14 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

important, however, to guarantee that a query will not produce impossible
results. That is, a query should be constrained to compute a subset of the
possible interpretation and a superset of the definite interpretation. We
formalize this by introducing the concept of a completion.

An indeterminate instant can be thought of as a set of possible instants,
one of which is the ‘‘actual’’ instant, but which one is unknown. Each of the
possible instants represents a different, complete description of reality.
Each possibility is termed a completion of the instant.5 The following
definition captures this intuition.

Completion of an indeterminate instant. Let a 5 ~a* z a*, Pa!. A com-
pletion of an indeterminate instant a is a i, where a iis a determinate
instant such that a* # a i # a*. The set of all completions for an instant a
is denoted C(a).

Completions of periods and intervals also exist. A completion of an
indeterminate period is one in which its delimiting indeterminate instants
are both replaced by their completions. A completion of an indeterminate
interval is one of the possible durations. The concept can also be general-
ized to apply to tuples, relations, and databases. A completion of x, be it a
tuple, relation, or database, is xc, where xc is the same as x but, with each
indeterminate instant, period, and interval, replaced by a completion of
that value. The set of all completions for an entity x is denoted C~x!.

In indeterminate semantics, the possible interpretation of the select
statement is attained by using a plausibility of 1, while the definite
interpretation is given by adopting a plausibility of 100. We focus on the
where clause to show the differences in these two interpretations. The
definite interpretation of the where clause is given below.

vWHERÊpredicate&bind~100, r!

5 $tt { r ∧ @t9 { C~t!~v^predicate&bSQL~t9!!%

The definite interpretation selects only those tuples that are selected by the
SQL semantics (note the use of v^predicate&bSQL) in every completion of the
tuple.

The possible interpretation differs only slightly. It selects only those
tuples that are selected by the SQL semantics in some completion of the
tuple.

vWHERÊpredicate&bind~1, r!

5 $tt { r ∧ ?t9 { C~t!~v^predicate&bSQL~t9!!%

5 Gadia et al. [1992] introduced the completion of a temporal tuple and of a temporal relation.
Our definition extends this notion to indeterminate instants, periods, and intervals and to
conventional tuples, relations, and databases containing such values.

Supporting Valid-Time Indeterminacy • 15

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

This semantics is reliable in the sense that it never produces incorrect
information.6 For a semantics to be reliable, the result of a where clause on
a completion of a relation r in the SQL semantics should be consistent with
the result in the indeterminate semantics on the relation r.

THEOREM 1. vWHERÊpredicate&b ind~1, r! is reliable, that is, for any
where clause W,

@r9 { C~r!@vWbSQL~r9! { C~vWb ind~1, r!!#.

Proofs are given in the Appendix.
The semantics is also maximal, in that if the semantics were extended to

be more informative, that is, allow more completions, then the result may
no longer be reliable. From the previous theorem, we know that
vWb ind~1, r! contains all the needed completions. We need to determine
that it contains no extraneous completions.

THEOREM 2. vWHERÊpredicate&b ind~1, r! is maximal, that is, for any
where clause, W,

@c { C~vWb ind~1, r!!@?r9 { C~r!~c 5 vWbSQL~r9!!#.

Note that these two theorems in concert demonstrate that, for all where
clauses W and indeterminate relations r,

C~vWb ind~1, r!! 5 ø
r9{C~r!

vWbSQL~r9!.

Observe that if the database has only complete information, there is only
one completion, and effectively just a single interpretation of a query, since
the possible and definite interpretations are equivalent. So credibility and
plausibility have no effect whatsoever on existing databases, which contain
only complete information, and the semantics of extant SQL queries and
databases is unchanged by extensions to support indeterminacy. This
important property is termed temporal upward compatibility [Bair et al.
1997]. In the context of indeterminacy, it is also equivalent to stating that
the indeterminate data model is a generalization [Gadia et al. 1992] of the
determinate (SQL) data model.

The possible and definite interpretations are just two of the many
interpretations available in the indeterminate semantics. Other interpreta-
tions result from choosing other credibility and plausibility values. These
interpretations are related. Increasing the plausibility setting in a select
statement yields a ‘‘more definite’’ interpretation. It is essential, however,
to ensure that these other interpretations do not generate spurious results.
We guarantee this by demonstrating (in Section 5.8) that evaluating a
select statement in the indeterminate semantics is monotonic in plausibil-

6Here we adopt the notions of reliability, and later, maximality, used by Gadia et al. [1992].

16 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

ity. Each result at a higher plausibility setting is a subset of the result at a
lower plausibility.

5.4 Supporting Ordering Plausibility

Both the possible and definite interpretations of a query in the indetermi-
nate semantics are stated in terms of SQL semantics. Unfortunately, a
straightforward implementation of these interpretations would be highly
impractical, since it would require computing the predicate over every
possible completion of a tuple in the inner loop of query processing. There
could be many completions for each tuple, depending on the duration of the
period of indeterminacy. As an example, there are over seven billion
completions of a single indeterminate period that has delimiting instants
with a period of indeterminacy of one day, assuming a chronon size of one
second.

Consequently, we introduce an operational semantics, vbop, that imple-
ments the indeterminate semantics. We show later that the operational
semantics is efficient, satisfies the goals outlined above, and is fully
consistent with indeterminate semantics, vb ind.

5.4.1 Probabilistic Ordering. The ordering plausibility (primarily) im-
pacts the meaning of the where clause. The semantics of the where
predicate without indeterminacy is based on a well-defined ordering of the
instants in the underlying relations [Allen 1983]. Every temporal predicate
(e.g., OVERLAPS) refers to the ordering given by Before to determine the
truth value of the predicate. For example, consider the following OVERLAPS
predicate.

v^instant1& OVERLAPS PERIOD~^instant2&, ^instant3&!bSQL 5

Before~v^instant2&bSQL, v^instant1&bSQL! ∧

Before~v^instant1&bSQL, v^instant3&bSQL!

The truth value of the predicate depends on the outcome of the Before
operation.

A set of determinate instants has a single temporal ordering. Given a
temporal expression consisting of temporal predicates, this ordering either
satisfies the expression or fails to satisfy it. A set of indeterminate instants,
however, typically has many possible temporal orderings, due to the many
completions of those instants. Some of these temporal orderings are plausi-
ble, while others are implausible. The user specifies which orderings are
plausible by setting an appropriate ordering plausibility value. We stipu-
late that a temporal expression is satisfied if there exists a plausible
ordering between pairs of instants that satisfies each predicate in the
expression. This semantics reduces to that of the determinate case when
there is only one ordering.

Supporting Valid-Time Indeterminacy • 17

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

In the SQL semantics, Before is the “#” relation on the representation of
instants (i.e., on chronons).

Before~a, b! 5 a # b.

In operational indeterminate semantics, temporal ordering is, instead,
based on the probability that one instant is before another. We define that
probability first and then give the new ordering operation.

Probabilistic ordering. For any two indeterminate instants, a and b, the
probability that a is before b is

Pr@a # b# 5 O
i, j{$0, . . . , N%

∧ i#j

Pr@a 5 i# 3 Pr@b 5 j#.

Figure 5(a) shows the value of Pr@a # b# (to two decimal places) for each
pair of instants in the relation Received, for example, Pr@e2 # e3# 5 .86
(each instant has a uniform p.m.f.). Those instants are placed on a timeline
in Figure 5(b).

Probabilistic ordering assumes that there are no dependencies between
the probabilities associated with indeterminate instants. Hence, it cannot
be used to compute the probability of orderings such as Pr@~a # b # h!#,
accurately.

Probabilistic equals can be defined analogously.

Probabilistic equals. For any two indeterminate instants, a and b, the
probability that a is equal to b is

Pr@a 5 b# 5 O
i{$0, . . . , N%

Pr@a 5 i# 3 Pr@b 5 i#.

To handle indeterminate instants in a flexible manner, we define a new
operator, BeforeI, that includes an additional parameter, the ordering
plausibility, g. The value of g can be any integer between 1 and 100
(inclusive). In general, higher (closer to 100) ordering plausibilities stipu-
late that only highly probable orderings be considered plausible.

Fig. 5. Pr@a # b# for the indeterminate instants in Received.

18 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Indeterminate before. For a pair of indeterminate instants, a and b, and
a plausibility g,

BeforeI~a, b, g! 5 $True ? Pr@a # b# 3 100 $ g%

ø $False ? Pr@b , a# 3 100 $ g%.
In operational semantics, BeforeI is defined on the power set of the
standard Boolean domain (a four-sorted domain, cf., [Belnap 1977]). There
are four possible outcomes for BeforeI on a pair of instants. In the first case,
the relationship does not hold, nor does its negation, and BeforeI evaluates
to the empty set. In the second, the relationship holds but its negation does
not and BeforeI evaluates to {True}. In the third case, the relationship does
not hold but its negation does. BeforeI evaluates to {False}. The fourth case
covers the other possibility, that both the relationship and its negation hold
simultaneously. BeforeI evaluates to {True, False}.

Note that in operational semantics BeforeI treats ordering probabilities
between 0 and 0.01 as 0. That is, it treats two instants that have a small
chance of occurring before each other as well-ordered in time. To distin-
guish the well-ordered case from this other case, we define the ordering
probability to be 0.01 whenever its value is between 0 and 0.01.

Refined definition of probabilistic ordering. Let a and b be a pair of
indeterminate instants.

Pr*@a # b# 5 5 Pr@a # b# if Pr@a # b# . 0.01
0 if Pr@a # b# 5 0
0.01 otherwise

This function replaces Pr in the definition of BeforeI. With this substitu-
tion, an ordering plausibility of 1 suffices to evaluate every possible
ordering, however improbable.

The missing mass function is treated as a special case. If one mass
function is treated specially and if one (or more) of the instants being
ordered has the missing mass function, then the mass is assumed to be
distributed in such a way that there is a small, but non-zero, probability e

for ordering the two instants. For example, if we introduce an instant e5

that has an overlapping period of indeterminacy with e2, but a missing
mass function, then Pr*@e2 # e5# 5 e and Pr*@e5 # e2# 5 e. Consequently,
in semantics, an instant with a missing mass function behaves exactly like
a null value, in that we stipulate that the participation of such an instant
in a BeforeI operation makes the BeforeI evaluate to the empty set (for all
plausibilities greater than 1). However, since there is a small probability
that an instant with a missing mass is before another instant (when their
periods of indeterminacy overlap), BeforeI will return {True,False} for an
ordering plausibility of 1.

Other ordering operations can be defined similarly to BeforeI. For in-
stance, we can define EqualsI using probabilistic equals, that is,
Pr*@a 5 b# and Strictly_BeforeI using probabilistic less than, that is,
Pr*@a , b#, etc.

Supporting Valid-Time Indeterminacy • 19

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

5.4.2 Predicates and Logical Formulas. We are now in a position to
supply operational semantics for the where clause predicate. We assume,
without loss of generality, that this predicate is a logical formula composed
of Before operations on pairs of instants; a complete set of temporal
predicates can be constructed with such formulas [Allen 1983].

v^pred1& AND^pred2&bop~g, r! 5 v^pred1&bop~g, r! ù v^pred2&bop~g, r!

v^pred1& OR^pred2&bop~g, r! 5 v^pred1&bop~g, r! ø v^pred2&bop~g, r!

vNOT^predicate&bop~g, r! 5 $x ¬ x { v^predicate&bop~g, r!%

Below, we illustrate the semantics with several examples, using the in-
stants in Figure 5.

ve2 # e3bop~100, r! 5 BeforeI~e2, e3, 100! 5 $% vNOT~e2 # e3!bop~100, r! 5 $%
ve2 # e3bop~50, r! 5 $True% vNOT~e2 # e3!bop~50, r! 5 $False%
ve2 # e3bop~1, r! 5 $True, False% vNOT~e2 # e3!bop~1, r! 5 $True, False%
ve2 # e3 AND e1 # e4bop~100, r! 5 $% vNOT~e2 # e3 AND e1 # e4!bop~1, r! 5 $%
ve2 # e3 AND e1 # e4bop~50, r! 5 $True% vNOT~e2 # e3 AND e1 # e4!bop~50, r! 5 $False%
ve2 # e3 AND e1 # e4bop~1, r! 5 $True% vNOT ~e2 # e3 AND e1 # e4!bop~1, r! 5 $False%
ve2 # e3 OR e1 # e4bop~100, r! 5 $True% vNOT~e2 # e3 OR e1 # e4!bop~100, r! 5 $False%
ve2 # e3 OR e1 # e4bop~50, r! 5 $True% vNOT~e2 # e3 OR e1 # e4!bop~50, r! 5 $False%
ve2 # e3 OR e1 # e4bop~1, r! 5 $True, False% vNOT~e2 # e3 OR e1 # e4!bop~1, r! 5 $True, False%

A key difference between operational and SQL semantics is that opera-
tional semantics uses BeforeI rather than Before. Here is the operational
semantics for the OVERLAPSexample given previously.

v^instant1& OVERLAPS PERIOD~^instant2&, ^instant3&!bop

5 BeforeI~v^instant2&bSQL, v^instant1&bSQL, g!

ù BeforeI~v^instant1&bSQL, v^instant3&bSQL, g!

We reiterate that in the probabilistic ordering all instants are assumed to
be independent. So in the expression “BeforeI~e2, e3, g!ANDBeforeI

~e3, e4, g!” the two BeforeI operations are evaluated separately, returning a
set of Boolean values that is subsequently intersected. While the strategy
of separate evaluation of conjuncts is consistent with determinate seman-
tics, it is important to realize that it is not equivalent to computing
~Pr@~e2 # e3 # e4!# 3 100! $ g.

5.4.3 Indeterminate Semantics of the Where Clause. The meaning of the
where clause in indeterminate semantics can now be given in terms of
operational semantics.

vWHERÊpredicate&bind~g, r! 5 $tt { r ∧ True { v^predicate&bop~g, t!%.

20 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Note that computation of the predicate over the completion of each under-
lying tuple has been replaced with set operations over the result of the Pr*
function. Admittedly, this function also appears to be expensive to compute,
as it is O~m2! per tuple, where m is the number of chronons in the periods
of indeterminacy of the instants to which Pr* is applied (m can be very
large). However, we show in Section 8 that the Pr* computation can be
approximated in constant time. With this result, operational semantics for
the evaluation of a temporal expression consisting of temporal predicates
and Boolean connectives has the same complexity as that of determinate
semantics: O~n!, where n is the number of predicates in the query,
independent of both the number of chronons and the number of completions
of indeterminate values of the tuple.

5.5 The Target List

The indeterminate semantics of the target list is quite simple.

v^target list&bind~g, r! 5 pv^target list&bind~g!~r!

5.6 Supporting Correlation Credibility

Correlation credibility extends the from clause with an optional credibility
phrase. In general, correlation credibility is used to replace indeterminate
time values with determinate time values. The replacement strategy to use
depends upon the credibility value and whether the time value replaced is
an instant, period, or interval. Below we define a Replace function that
effects the replacement for every time value in a tuple.

Replace. Let tuple t 5 ~X, a1, . . . , an! where X are non-temporal
values and a1, . . . , an are time values. Then

Replace~d, t! 5 ~X, R~a1!, . . . , R~an!!.

R is the replacement strategy. Table I lists the replacement strategies for
each combination of credibility value and kind of time value, assuming that
the time value is represented as ~a* ; a*, Pa!—note that this representa-
tion suffices for instants, period-bounding instants, and intervals—and
that E@a# is the expected value.

Table I. Replacement Strategies

instant period interval
start end

INDETERMINATE a a a a
EXPECTED E@a# E@a# E@a# E@a#
MIN a* a* a* a*

MAX a* a* a* a*

Supporting Valid-Time Indeterminacy • 21

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

As an example, consider the tuple

t 5 ~Centurion, AB33, @March 1 ; March 31 2 June 1 ; June 30#!.

For this tuple, containing a period timestamp, the four credibility values
yield the following results:

Replace~INDETERMINATE, t! 5 t

Replace~EXPECTED, t! 5 ~Centurion, AB33, @March 15 2 June 15#!

Replace~MAX, t! 5 ~Centurion, AB33, @March 31 2 June 1#!

Replace~MIN, t! 5 ~Centurion, AB33, @March 1 2 June 30#!

Using the Replace function, we are in a position to define the meaning of
the from clause in indeterminate semantics, including specification of how
the default credibility can be overridden for a particular correlation vari-
able.

v^from list&bind~d, d!

5 v^from1&, . . . , ^fromn&bind~d, d!

5 v^from1&bind~d, d! 3 . . . 3 v^fromn&bind~d, d!

where each of the ^fromi&s can be either of two constructs:

v^relation&bind~d, d! 5 $t9t { ^relation& ∧ t9 5 Replace~d, t!%

v^relation& WITH CREDIBILITY d9bind~d, d! 5 $t9t { ^relation& ∧ t9 5 Replace~d9, t!%

When ^from list& is given a credibility of d 5 INDETERMINATE, it re-
tains all of the indeterminacy present in the temporal values of d, not
altering them at all. Hence,

v^from list&bind~INDETERMINATE, d! 5 v^from list&bSQL~d!.

5.7 Result of the Example Query

At this point, the indeterminate semantics of the select statement has been
specified. As an example, we provide tuple calculus semantics for the query
given in Figure 3.

vQbind~d! 5 $~r.Warehouse, r.Lot_Num, p.SerialNum, r.When!

r { Replace~INDETERMINATE, Received!

∧ p { Replace~INDETERMINATE, In_Production!

∧ p.Model 5 9Centurion 9 ∧ r.Part 5 9wingstrut 9

∧ True { $BeforeI~p.Duringstarting, r.When, 60! ù

BeforeI~r.When, p.Duringterminating, 60!

22 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Here the Cartesian product and projection operators have been expressed
in tuple calculus.

If this query is applied to the database given in Figure 1, it will result in
three tuples, shown in Figure 4. First, the time values in the underlying
relations are unchanged because the query uses a correlation credibility of
INDETERMINATE. The where clause eliminates every tuple from In_Produc-
tion except the Centurions. Likewise, the where clause also eliminates
every tuple from In2Production except the wing strut tuples.

The shipment of lot number 23 was definitely received during production
of Centurion serial number AB33; it satisfies the overlap with every
plausibility. The other shipments might have been received. Lot number 30
satisfies the overlap for plausibilities lower than 60 because (May 30 ;
June 18, uniform) is before (June 1 ; June 30, uniform) for every
ordering plausibility below 65. The other shipment, however, arrived too
late in June to be considered plausible. It is plausible that lot number 31
arrived before the end of production for ordering plausibilities of 28 or less
only. For production of the Centurion serial number AB34, all the ship-
ments arrived too early, except for lot number 31 from the Cessna ware-
house.

5.8 Correctness

The intuitive semantics ~vb ind!, motivated in Section 5.3, applies the predi-
cate to each completion and thus is impractical, whereas operational
semantics ~vbop! can be efficiently implemented. The correctness of opera-
tional semantics hinges on two requirements. The first is that the two
semantics agree where the intuitive semantics is defined, that is, for the
possible and definite interpretations. The possible interpretation has an
ordering plausibility of g 5 1; the definite interpretation has g 5 100.
The interpretations concern ordering plausibility only ; they apply at any
correlation credibility.

THEOREM 3. vb ind~g, r! and vbop~g, r! are equivalent for g 5 1 and
g 5 100.

The second requirement is that the operational semantics be monotonic:
as the plausibility increases, the result must move from possible interpre-
tation towards definite interpretation. This ensures that the semantics at
intermediate plausibilities is consistent with that of the possible interpre-
tation.

THEOREM 4. vSb ind~d, g, r! is monotonic in g.

6. IMPLEMENTATION OVERVIEW

Changes to the semantics to support valid-time indeterminacy induce
changes in implementation. These changes are isolated to the representa-
tion of instants, intervals, and periods, and to the new or modified temporal
operators such as BeforeI and Replace. In the next two sections, we describe

Supporting Valid-Time Indeterminacy • 23

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

the data structures and algorithms to implement these new or modified
operators. Our goal is to provide support for valid-time indeterminacy
without adversely impacting storage requirements or query evaluation
efficiency.

At first glance, support for valid-time indeterminacy appears to be
expensive. Some of the modified operators, e.g., BeforeI, are executed in the
‘‘inner loop’’ of query processing, potentially performed many times for each
combination of tuples in the queried relations. Significant slowdown of
these operators would have a dramatic effect on the overall speed of query
evaluation. We show below how the new operators can be implemented
efficiently.

7. INDETERMINATE TIMESTAMP FORMATS

Valid-time indeterminate instants, periods, and intervals model new kinds
of temporal information. To represent indeterminate temporal values, new
temporal data types, or timestamps [Jensen et al. 1994], are needed. In this
section, we briefly describe indeterminate timestamps. We present indeter-
minate instant timestamps only; the interval and period timestamps are
natural extensions of the instant timestamps [Dyreson and Snodgrass
1995a].

The instant format described here builds upon the determinate instant
format; a full description of this format is given elsewhere [Dyreson and
Snodgrass 1995a]. A determinate instant timestamp combines a type tag
(to indicate the kind of instant, e.g., determinate or special, such as ‘now’
[Clifford et al. 1997]) with a signed integer representing a distance (in
chronons, or more precisely, in granules7) from the timeline origin or
anchor-point. The type tag occupies three bits and the signed integer 29,
61, or 93 bits, depending on the maximum range and granularity of the
timestamp. The 64-bit timestamps can store a range of historical times to
the granularity of a microsecond, or times within a range of 36 billion years
(all of time, back to the big bang) to the granularity of a second. It is
important to point out that the range and granularity of an instant
timestamp are stored in the schema rather than in the timestamp.

Indeterminate instants cannot use the determinate timestamp because
an indeterminate instant is more than a single time: it is two times and a
probability mass function. To represent indeterminate instants, we add
four new formats. These four formats are a combination of compact or
general with standard or nonstandard distributions. The combinations are
explained in detail below.

Each indeterminate timestamp format has the three basic parts needed
to describe an indeterminate instant: a lower support, an upper support,
and a probability mass function. These three parts are encoded in the

7A granule is a coarse-grained grouping of chronons, e.g., chronons can be grouped into days,
years, or months. The timestamp stores the distance in terms of granules so that large ranges
of time, e.g., 10 million years, can be stored compactly by counting in coarse granules, e.g., in
millennia.

24 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

timestamp either implicitly or explicitly. Table II indicates for each format
whether the representation is explicit or implicit. For example, the deter-
minate format has an explicit lower support, but an implicit upper support
(identical to the lower support) and an implicit probability mass function
(the mass function is missing).

Compact indeterminate formats implicitly encode the upper support.
Implicit encoding consists of a chunk-size and a number of chunks. The
upper support is computed by adding the number of chunks, each of size
chunk-size, to the lower support. For example, to represent a period of
indeterminacy of seven hours using chunks, the timestamp would record
that there are seven hour-sized chunks. The chunking scheme was devel-
oped to meet the expectation that regular periods of indeterminacy, e.g.,
N hours, N days, or N years, will be the norm. If the format is not compact,
it is said to be general and the upper support is stored explicitly as a count
of granules from the anchor point.

If the chunk-size and number of chunks can be stored in two small fields,
then chunking is a very efficient method of encoding a terminating time. In
our formats, the chunk-size is a four-bit field and the number of chunks a
seven-bit field, or eleven bits in toto. Since the chunk-size is four bits, only
a limited number of chunk-sizes are available. One of the duties of the
database implementor is to specify chunk-size tables, one for each sup-
ported granularity. Common chunk-sizes are seconds, hours, days, and
weeks. The space efficiency of chunking comes at the expense of some
run-time computation, since the terminating time must be computed on the
fly. The computation costs one addition to add the chunks to the lower
support.

The timestamp representation of a probability mass function is the name
of a mass function (a 16-bit identifier). Only the name of the mass function,
for example, uniform, normal, etc., is stored with the timestamp; the actual
mass function is stored separately, as described in Section 8.1.2. Instants
with a uniform distribution or a distribution that is missing are termed
standard distributions. Since these distributions will likely be common, we
optimized their representation as a single bit (to toggle between uniform
and missing) rather than a 16-bit identifier.

The user specifies the kind of timestamp, compact or general, and the
kind of distribution, standard or nonstandard, to use when defining or
altering a temporal attribute, as discussed in Section 4. The design of the
indeterminate timestamp formats optimizes representation of the common

Table II. Encodings in Timestamp Formats

Format Starting Time Terminating Time
Probability
Distribution

determinate explicit implicit implicit
compact, standard explicit implicit implicit
compact, nonstandard explicit implicit explicit
general standard explicit explicit implicit
general, nonstandard explicit explicit explicit

Supporting Valid-Time Indeterminacy • 25

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

mass functions (standard mass functions cost only a single bit). The
chunking scheme and the use of standard distributions yield a compact
timestamp. SQL-92’s limited TIMESTAMPformat without fractional seconds
and without indeterminacy (assuming that the positions in the SQL-92
timestamp are four-bit nibbles) is 56 bits. Our indeterminate compact
timestamp with the same range and granularity as the SQL-92 datetime
format requires only 64 bits. The smallest indeterminate timestamp is just
32 bits (a compact, standard format with a range of 218 granules and a
chunked period of indeterminacy). The largest is 208 bits (a general,
nonstandard format with an upper and lower support within 293 granules
of the granularity anchor point).

8. IMPLEMENTING OPERATORS

In this section, we discuss implementing BeforeI and Replace.

8.1 Implementing BeforeI

We observed in Section 5 that the semantics of temporal constructors and
predicates such as OVERLAPSand PERIODare ultimately based on BeforeI.
If the instants being compared by BeforeI are determinate, then BeforeI is
the “ #” relation on the domain of time values (integers extended with
special values representing the beginning and end of time). Indeterminate
instants complicate the implementation of BeforeI. In the indeterminate
semantics, it may be necessary to compute the probability that one instant
is before another—a potentially costly computation. We show below how
this computation can be made efficient.

8.1.1 The Common Interface. The interface to the BeforeI routine is
given in Figure 6. The interface determines if the relatively costly compu-

Fig. 6. Interface to BeforeI.

26 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

tation of the ordering probability can be avoided. If a and b are the same
instant, then BeforeI is trivially true, since an instant is always equal to
itself. We test for ‘sameness’ by tagging each instant in memory and
checking the tags. BeforeI is also trivial if a’s and b’s indeterminacy periods
are disjoint. Disjointness implies that one instant is before the other in all
possible cases. We anticipate that disjoint periods of indeterminacy will be
common. Even if periods of indeterminacy overlap, there are several special
cases. If the periods of indeterminacy overlap, then there is at least a small
probability that each instant is less than or equal to the other. Conse-
quently, the relationship is satisfied for a plausibility of 1 (i.e., any
non-zero probability), but cannot be satisfied for a plausibility of 100 (i.e., a
probability of 1.0). For plausibilities between 1 and 100, if either mass
function is missing, then no relationship between the instants can be
determined. If no special case applies, then the ordering probability,
Pr*@a # b#, must be calculated.

8.1.2 Probability Mass Function Representation. In this section, we
describe a data structure to store a probability mass function. We present
the data structure first since it impacts the algorithm design.

In general, a function can either be computed on the fly or precomputed
and its values cached, say, in an array. The latter strategy is best for a
probability mass function. BeforeI is executed in the ‘‘inner loop’’ of query
processing, performed many times during a query. We anticipate that many
useful probability mass functions are not easily computable functions,
making computing values on the fly expensive in terms of execution time
whereas table-lookup is quite cheap, although potentially expensive in
terms of space.

To attain reasonable storage costs, the probability mass function is
approximated. We approximate a mass function as follows. First, the mass
is quantized; that is, it is parceled into indivisible, discrete chunks of
probability. The quanta can be thought of as rods of equal mass but
(possibly) differing lengths. If a probability mass function has P rods in
total, then the mass of each rod is 1 / P. The number of rods is called the
precision of the approximation. Next, the mass function is sampled at C
evenly-spaced points. C is called the coarseness of approximation. For
simplicity, we assume that the domain of the mass function is [0,1] (i.e., the
domain is normalized). The sample points are $1/ 2C, 3/ 2C, . . . ,
~2C 2 1!/ 2C%. The coarseness would usually be much larger than preci-
sion. (For instance, in our experiments we use a coarseness of 216, but a
precision of 28.) Finally, the rods to the left and right of each sample point
are counted and recorded. The count of rods to the left and right of each
sample point is the approximated mass function. The rod covering a point
is not counted (this is the error in approximation).

The approximation of the uniform mass function with a coarseness of 8
and a precision of 3 is shown in Figure 7, where the sample points are
1/16, 3/16, . . . , 15/16. The position of the rods covering the sample
points indicates approximately how much probability is to the left and right

Supporting Valid-Time Indeterminacy • 27

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

of a sample point. From left to right in the figure, the first rod covers the
first three sample points. At each sample point under the first rod, there
are no rods to the left and two rods to the right, so most of the probability,
2/3 of the total, is located to the right. The second rod covers the next two
sample points. For each of these sample points, 1/3 of the total, is located
to the right. The second rod covers the next two sample points. For each of
these sample points, 1 / 3 of the total mass is to the left and 1/3 is to the
right of the point. The final rod covers the last three sample points, each
with 2/3 of the total mass to the left. Note that in the approximation, the
mass to the left and right of a sample point is within 1/3 of the actual mass
in the unapproximated distribution.

The rod and point method of approximating a probability mass function
has some limitations. Coarseness and precision restrict the variety of
functions that can be approximately represented. If coarseness equals
precision, then only uniform probability mass function (every point is
equally likely) can be represented (a different rod on every point). As
coarseness and precision diverge, more mass functions can be represented.
In general, with a precision of P and a coarseness of C, at most S C

PDdifferent
probability mass functions are possible. Further, “spiky” mass functions
cannot be approximated. That is, mass functions that have a mass of more
than 1/P spread over less than 1/C of their domain cannot be approxi-
mated (which means that two or more rods would have to span the same
point). It is the database implementor’s task to choose the appropriate C
and P values to support the kinds of mass functions that are of interest to
users.

Using the rod and point method, a probability mass function is approxi-
mated with an absolute error of less than 1/P. That is, the probability of a
possible instant in the approximated distribution is within 1/P of the
actual probability. If the difference between the probabilities is more than
1/P, then the approximation has been done incorrectly, as a new rod should
have been introduced.

The approximated mass function is stored in a binary tree rather than in
an array. There is one leaf for each sample point. For instance, the first leaf

Fig. 7. The approximated uniform mass function with P 5 3 and C 5 8.

28 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

in a preorder traversal corresponds to the sample point 1/C. At each leaf in
the tree, the number of rods to the left and right of the sample point are
stored. For example, in the approximation of the uniform mass function
shown in Figure 7, there are no rods to the left and two rods to the right of
the first point. The example shows that the number of rods left and right of
a sample point often sum to P 2 1, since the rod covering the node is
uncounted. The tree for the approximated uniform mass function is shown
in Figure 8(a).

In the tree shown in Figure 8, C and P are small values, consequently the
entire tree can be easily stored in just a few bytes. But when C and P are
large, it is infeasible to store the full tree, nor do we need to do so. We are
primarily interested in recording where each rod ends. Observe that if both
children have the same count, then no rod ends within the subtree rooted
at the parent (and all nodes in the subtree will have the same count). All
such subtrees can be pruned, keeping only the root of the subtree, which is
specially marked. When traversing a pruned subtree, the tree traversal
algorithm treats a specially marked node as the root of a ‘‘virtual’’ subtree
and traverses the subtree as though it were stored. The pruned tree for the
example distribution is shown in Figure 8(b), where the specially marked
nodes are represented as a box within a box.

The tree pruning technique saves quite a bit of space. The pruned tree
has at most 2P leaves (one leaf might be needed per rod end) and could
have as few as P leaves. In contrast, the unpruned tree has C leaves (in
general C .. P). The number of interior nodes also varies, with as few as
P 2 1 interior nodes and as many as 2P 2 1 interior nodes in a tree. Each
interior node uses two log2~C!-bit pointers while each leaf node uses two
log2~P!-bit fields to store the number of rods. For C 5 216 and P 5 28, the
storage cost of a pruned search tree is between 1.5K and 3K bytes.

The distribution tree efficiently stores the approximated probability mass
function, but the approximation impacts the computation of Pr*@a < b#,
changing the problem to one of rod counting.

Fig. 8. The tree for the approximated uniform mass function with P 5 3 and C 5 8.

Supporting Valid-Time Indeterminacy • 29

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

8.1.3 An Overview of Computing Pr*@a < b#. Calculating the probability
that one instant is before another using the approximated mass function
can be reformulated as a rod–counting problem. Assume that there are two
rows of P rods. The two rows, which we call the a-row and the b-row, are
parallel to each other, as shown in Figure 9. Note in the figure that the
length of each rod can vary. (The rods in the figure have the same area to
indicate that short, fat rods have the same mass as long, skinny rods.) The
rod-counting problem is to count the pairs of rods, one rod from each row,
such that the rod from the a-row is before the rod from the b-row. Each
such pair represents a contribution of 1 / P2 to Pr*@a < b#.

The rod–counting problem is complicated by the fact that several rods
may be located within a single chronon, so some rods in b could be strictly
before those in a, yet may still contribute to Pr*@a < b#. For the purpose of
computing Pr*@a < b#, each chronon has an indivisible mass; that is, all the
rods entirely within the same chronon should be treated as a single rod
with a mass equivalent to the total mass of the constituent rods. For
example, consider an indeterminate instant with a uniform mass function
and a set of possible chronons consisting of only two chronons. There are
P/ 2 rods within each chronon, consequently each chronon in this indeter-
minate instant has an indivisible mass of 0.5.

The rod–counting problem also differs from the original problem of
computing the probability that one instant is before another in a subtle, but
significant, way: the sum of the mass in pairs of rods where a’s rod is before
b’s rod is not quite the same as Pr*@a < b#. Consider a pair of rods, neither
of which is before the other (the rods are at the same place in the overall
ordering of rods). Each rod represents the probability that the instant is
located during a certain range of chronons, but how the probability is
distributed among the chronons within that range is unknown. Although
neither rod is before the other, it is probably the case that some chronon
within the range represented by the rod is before a chronon in the range
represented by the other rod. The rod–counting problem does not count
the small probability ~# @1/P2#! of this case, and thus undercounts
Pr*@a < b#. Below, we quantify the error on the rod-counting technique.

The algorithm for counting pairs of rods is based on a divide-and-conquer
technique. Each step of the algorithm is illustrated in Figure 9. The first
step is to choose a pivot. A pivot is a rod in a’s row of rods. The pivot splits
the rods in a-row into three groups: those before the pivot, a before; those
after the pivot, aafter; and the pivot itself.

The second step is to identify where the right-end of the pivot belongs in
the ordering of b’s rods.The right-end of the pivot divides b’s row of rods
into three parts: those before the right-end of the pivot, bbefore; those after
the right-end, bafter; and, perhaps, a rod that overlaps the right-end,
boverlap.

The third step is the conquer step. Observe that all the rods in a before

ø pivot are before all the rods in bafter. Each pair of rods, one chosen from
each of these two groups, adds 1 / P2 to a running sum of Pr*@a < b# . If the

30 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

running sum (scaled by 100) exceeds the plausibility, g, then the algorithm
terminates, since the plausibility has been met and BeforeI is {True}. This is
called an “early exit” condition.

Similarly, all the rods in bbefore are before the rods in aafter. Each pair of
rods, one chosen from each of these two groups, adds 1 / P2 to a running
sum of Pr*@b < a#. If the running sum (scaled by 100) exceeds 100– g, then
the algorithm terminates, since BeforeI is {False}. This is the only other
“early exit” condition.

If an early exit is not taken, then two subproblems remain to be solved.
The algorithm has yet to determine the relationships between the rods in
abefore and those in bbefore ø b overlap, as well as the relationships between
the rods in aafter ø pivot and those in bafter. Each of these subproblems is
solved recursively in the next ‘‘round’’ of the algorithm.

8.1.4 Choosing the Pivot. The choice of pivot is an important factor in
controlling the algorithm. The algorithm chooses as the pivot the rod
corresponding to half of the remaining rods in a (those rods that have yet to
be counted). This choice enables the algorithm to reach an “early” exit
condition quickly. Overall, the total work performed by the algorithm is to
count all P2 pairs of rods. But the counting can stop when enough pairs are
counted to determine if either Pr*@a < b# or Pr*@b < a# is satisfied (the

Fig. 9. A rod–counting operation.

Supporting Valid-Time Indeterminacy • 31

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

early exit conditions). It is better if, in the first few pivot choices, an
algorithm maximizes the pairs of rods it counts, since it will then hit an
exit condition in fewer pivots.

THEOREM 5. The kth pivot will count P2/ 2 log2~k!11 pairs.

For example, for a precision of 28, after the 14th pivot, the algorithm will
have counted 93% of the total number of pairs. In other words, to approxi-
mate the ordering probability to within 10%, at most fourteen pivots must
be performed.

As we pointed out earlier, the approximation by rods and points leads to
an undercounting of Pr*@a < b#. However, this undercounting is small.

THEOREM 6. The undercount is less than 2 / P.

8.1.5 Implementation Details for Computing Pr*@a < b#. The code for
the ‘‘pivoting’’ algorithm is shown in Figure 10. The counting stops when
the count of pairs exceeds the needed number of true pairs or false pairs (it
simultaneously solves for both Pr*@a < b# and Pr*@b < a#), or when all the
possible pivots have been tried (an undercount has occurred, and we
assume that Pr*@a < b# is false). The most important feature of this code is
that the majority of instructions are ‘‘cheap’’ integer operations: shifts,
assignments, and additions. There are only two multiplications, no divi-
sions, and no floating point operations. Although, for pedagogical reasons,
we have presented the pivoting code as a recursive procedure, the proce-
dure is implemented using a queue and iteration, thus avoiding the
expense of recursive procedure calls and supporting breadth-first recursion.
One final observation: calculating the number of true and false pairs has
been reduced to a table-lookup, since the ordering plausibility, g, can take
on only 100 different values.

8.1.6 Other Comparison Operators. Implementation of other primitive
comparison operations, such as Pr*@a 5 b# to support EqualsI and probabi-
listic Pr*@a < b# to support Strictly_BeforeI, varies only marginally from
the implementation of Pr*@a < b#; the pivoting technique is a general
strategy. We do not consider these operations further in this paper,
other than to note that, on average, fewer pivots are needed to compute
Pr*@a 5 b# than Pr*@a < b#, since the probability that two instants are
equal is very small (for large periods of indeterminacy). Consequently, it is
a relatively efficient operation, which is why in our experiments we focus
on the more expensive Pr*@a < b#.

8.2 The Replace Function

The Replace function changes an indeterminate time value in one of four
ways. It could replace the value with the lower support, replace it with the
upper support, replace it with the expected value, or leave the value
unchanged. The straightforward pseudocode for Replace for an instant is
given in Figure 11. The code for starting and terminating period time

32 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

values, as well as for intervals, is similar, and omitted for brevity. In this
pseudocode we assume that the expected value for the probability mass

Fig. 10. The pivoting algorithm.

Supporting Valid-Time Indeterminacy • 33

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

function has been precomputed for the normal interval [0,1]. This value is
cached and used by the Replace function to compute the expected value for
a nonnormal interval, that is, a period of indeterminacy.

8.3 Impact of Indeterminacy on the Determinate Implementation

In parallel with the theorem of reducibility given in Section 5.8, conven-
tional SQL queries on determinate relations incur no additional execution
overhead under the new semantics, and executing such queries on indeter-
minate relations adds little overhead, since BeforeI’s for a plausibility of
100 are very efficient.

9. EMPIRICAL ANALYSIS OF THE IMPLEMENTATION

We implemented the indeterminate operations in a prototype system for
temporal support called MULTICAL, which is written in the C programming
language [Soo et al. 1992].8 We compiled the code using the GNU C
compiler, version 2.7.2, with compiler optimization fully enabled. We used a
precision of 28 and a coarseness of 216 in the code for BeforeI. These values
limit the maximum error in the pivoting algorithm to less than 1%. We also
implemented BeforeI with a maximum possible error of 10%. This version of
BeforeI performs (at most) 14 pivots, as discussed in Section 8.1.4.

We tested the performance of each operation in isolation first. All tests
were performed on a DEC-Alpha 3000 Model 400 (a 133.33 MHz machine).
The timings for each test were collected using the atom tool [Srivastava
and Eustace 1994], which allowed us to count machine cycles. Table III
shows the results for each operation. The execution times shown in the

8 C code for the operations discussed in the previous section, as well as for all the experiments
discussed here, is available via the WWW at http://www.cs.jcu.edu.au/˜curtis/htmls/
indeterminacy.html.

Fig. 11. The Replace Instant algorithm.

34 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

table only include the cycles actually spent within the function and exclude
the cost of the function call itself. “NA” denotes ‘‘not applicable.’’ The
Replace and determinate Before operations are relatively cheap. The worst
case for Replace occurs with the EXPECTEDcredibility because it involves
floating point multiplication. The best– and worst-case behaviors of BeforeI

vary significantly.
To further examine BeforeI’s behavior, we devised several additional

tests, designed to capture both the worst-case and the expected-case
performance of the pivoting algorithm. The worst case for BeforeI happens
when the two indeterminate instants span the same chronons and have
uniform distributions. We tested this worst-case performance of BeforeI on
a pair of instants, each of which has a period of indeterminacy of one
million chronons. The results are given in Figure 12. The graph plots the
execution time (in machine cycles) of BeforeI for the plausibility values 1 to
100. As the ordering plausibility approaches 50, the execution times
increase because more pivots are needed to determine the outcome of
BeforeI. The average worst-case BeforeI operation with 1% error across all
plausibilities is approximately 2781 machine cycles, with a high of 86930
machine cycles at a plausibility of 50 and a low of 77 machine cycles. With
a maximum error of 10%, the average worst case for BeforeI is somewhat
less, 1246 machine cycles, with a high of 4960 machine cycles at a
plausibility of 50.

The worst-case performance does not always occur at a plausibility of 50,
but depends on the relative positions and mass functions of a pair of
indeterminate instants. Two instants with uniform distributions which
have partially (but not fully) overlapping periods of indeterminacy will
exhibit worst-case performance at plausibilities other than 50. Using the
same two instants from the first test, we tested a range of relationships
between their periods of indeterminacy, from no overlap to complete
overlap. We fixed the position of one instant in chronon space and slid the
other instant relative to the fixed instant. Figure 13 shows the results. The
z-axis is the cost (in machine cycles) of a single call to BeforeI (we used the
10% error version). The x-axis is the plausibility. The y-axis is the relative
position of the two instants, that is, ‘‘far apart’’ indicates no overlap in the
periods of indeterminacy whereas ‘‘even’’ means complete overlap. The
figure shows that if the instants do not overlap (a common case), BeforeI is
very cheap. If the instants overlap, BeforeI only exhibits poor performance

Table III. Timings on Indeterminate Operations (in machine cycles)

Operation Determinate Cost
Indeterminate
Best-Case Cost

Indeterminate
Worst-Case Cost

Before (Determinate) 73 NA NA
BeforeI - 1% error NA 77 86930
BeforeI - 10% error NA 77 4960
Replace NA 33 239

Supporting Valid-Time Indeterminacy • 35

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

along a central ridge. Note that the graph in Figure 12 is a slice of the
graph in Figure 13 at the ‘‘even’’ point along the ‘‘relative position’’ axis.

While examining worst-case behavior is sometimes illuminating, we
anticipate that it will be uncommon for two instants to have overlapping

Fig. 12. worst-case performance of BeforeI.

Fig. 13. Sliding one instant relative to another performance of BeforeI.

36 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

periods of indeterminacy, and that worst-case behavior will be rarer still.
For example, consider a relation of employee hires that has an instant
timestamp column that records the day that the employee was hired. The
day an employee was hired is an indeterminate instant, assuming a
common timestamp granularity of a second. Suppose we query this relation
to determine which employees were hired before the third fiscal quarter
began. The quarter began at 8 AM on October 1st. It is unlikely that most of
the hiring instants overlap 8 AM on October 1st. Hence, the BeforeI
comparison for most of the instants in the relation will be very efficient,
and the impact of the other comparisons on the total work done in the
query will be slight.

To explore this aspect further, we devised a further test. We randomly
placed ten instants, each of which had a one-day period of indeterminacy
(86,400 chronons) and a uniform distribution, in a chronon space that
varied between 1 and 50 days (between 86,400 and 4,320,000 chronons) in
size. For every plausibility between 1 and 100, we tested BeforeI on every
possible combination of instants (102 possible combinations) at plausibili-
ties ranging from 1 to 100. Instants were not compared to themselves. We
rerandomized the location of the instants between each test (i.e., per one
hundred comparisons). The results are depicted in Figure 14. The graph in
Figure 12 is a slice of this graph at a value of one unit of random space. The
graph shows that in a normal mix of instants, rare worst-case situations
have little impact on overall performance. Only when the size of the
random space is small is the cost of BeforeI significant.

To this point, we have not determined how much more expensive BeforeI
will be than Before. To measure the relative cost of BeforeI, we reran the
‘‘random placement of instants’’ test described above on both Before and

Fig. 14. The cost of comparing ten instants randomly placed in a chronon space of varying size.

Supporting Valid-Time Indeterminacy • 37

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

BeforeI. But this time we let the size of the random chronon space vary
between 1 and 93 days (3 months) rather than 1 and 50. For each day, we
averaged the cost of the BeforeI operation across all the plausibilities, 1 to
100. The results are plotted in Figure 15. When all ten instants are
randomly placed in a chronon space three months in size (i.e., there are ten
employee hires in three months and only these hires are used in the query),
BeforeI is approximately one and one-half times as expensive as Before.
This difference remains approximately the same as we further increase the
size of the random space.

Although the run-time cost of each operation considered in isolation is
informative, it does not address the ‘‘actual’’ cost of a query with indetermi-
nate information, since the frequency of operations and the interactions
between operations are absent from the analysis. In addition, these opera-
tions are only one portion of query evaluation; many other operations are
performed in most queries. To measure BeforeI and the other operations in
context, we designed a test of a complete query. We hand-compiled the
example SQL query given in Figure 3 into the series of MULTICAL calls
shown in Figure 16. The determinate and indeterminate sequences of calls
differ only slightly; the differences are highlighted in italics in the indeter-
minate sequence. We used the compact indeterminate timestamp formats,
which are more expensive to unpack, but have the same space cost as the
determinate timestamps used in the experiment. Note that each sequence
does O~n2! unpacks, that is, all possible combinations of instants and

Fig. 15. The average cost of comparing ten instants randomly placed in a chronon space of
varying size.

38 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

periods are unpacked. An alternative query processing strategy is to
unpack each instant and period and cache the results, costing only O~n!
unpacks. We also programmed this sequence of calls, which we refer to as
the ‘‘optimized unpack sequence.’’ For all the sequences, we suppressed all
input, output, and disk I/O, as these expensive operations tend to dominate
the cost of other operations, and also because those costs are identical
whether indeterminacy is present or absent.

To test the query, we once again used a variation of ‘‘the random
placement of instants.’’ We used the tuples shown in Figure 1, but ran-
domly placed the instants in a chronon space of increasing size. We used a

Fig. 16. MULTICAL calls for example query.

Fig. 17. The average cost of the example query per combination of tuples.

Supporting Valid-Time Indeterminacy • 39

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

period of indeterminacy of one day (86,400 chronons) for the instants in
both relations. The results are shown in Figure 17. Except for the rare
situations where most of the instants are packed into a relatively tight
random space, indeterminacy roughly doubles the CPU cost of the query.

10. EXTENDING TEMPORAL QUERY LANGUAGES

In SQL, valid-time indeterminacy is a form of value incompleteness (cf.
[Motro 1990], where the value of an attribute is not fully known. The
Received relation in Figure 18 provides examples of value incompleteness
for the Part attribute: a part may exist which we have yet to identify ~s5!,
has been partially identified (s6 restricts the kind of part to belong to the
specified class of parts), or has been narrowed down to a set of possibilities
(s7). We showed in Section 3 how to support value incompleteness in
instant, period, and interval attributes.

Valid-time indeterminacy can also apply in temporal data models [Tansel
et al. 1993]. In such models, the values themselves vary over time. This
behavior is often modeled by associating a timestamp with each tuple.
Allowing this implicit timestamp to be indeterminate adds a new source of
incompleteness, which we term tuple valid-time indeterminacy, which is
orthogonal to other sources of incompleteness. In particular, it can peace-
fully coexist with value incompleteness, of both nontemporal and temporal
attributes, and with tuple incompleteness, where the membership of a tuple
in a relation is not fully determined. We advocate separating the various
kinds of indeterminacy, so that users can choose the combination that is
most appropriate for their application.

As a concrete example, we now review how tuple valid-time indetermi-
nacy can be added to a specific temporal query language, TSQL2. This
language was designed by a committee of eighteen researchers from aca-
demia, vendor research labs, and industry [Snodgrass 1995]. In this sec-
tion, we consider a variant of TSQL2 that is being proposed for incorpora-
tion into the SQL3 standard [Snodgrass et al. 1996]. This variant differs
from TSQL2’s data model in allowing duplicate tuples and timestamping
tuples with periods instead of with temporal elements (which are sets of
maximal periods).

TSQL2 supports three temporal dimensions: valid time, transaction time,
and user-defined time [Snodgrass 1995]. User-defined time is an uninter-
preted time domain, having no special query language support. The ap-
proach to value incompleteness discussed to this point applies to user-

Fig. 18. Examples of value incompleteness.

40 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

defined time. In the remainder of this section, we consider tuple valid-time
indeterminacy. Specifically, we allow the period valid timestamp of a tuple
to be an indeterminate period. As the timestamp indicates when the fact
represented by the tuple was valid in reality, an indeterminate timestamp
indicates that it is not known precisely when the fact became true, or no
longer was true. Note, however, that we do know that the fact was true at
some point (orthogonally, tuple incompleteness could be supported, to add
the uncertainty in whether the fact was ever true).

10.1 Syntactic Extensions

Since TSQL2 is an extension of SQL-92, we start with the syntactic
extensions introduced in Section 4, specifically, indeterminate temporal
attributes in the create table and alter table statements, correlation
credibility in the from clause, and ordering plausibility in the where clause.
Interestingly, these are all that are necessary to add tuple valid-time
indeterminacy to TSQL2. As an example, to define the Received relation as
an indeterminate valid-time relation, we simply specify an indeterminate
period type as the implicit timestamp.

CREATE TABLE Received (Warehouse CHARACTER(30),
Lot_Num INTEGER,
Part CHARACTER(40))

AS VALIDTIME INDETERMINATE PERIOD(DATE) WITH NONSTANDARD
DISTRIBUTION;

Note that the Whenattribute is no longer present; instead the timestamp
is implicit. The implicit timestamp associated with a correlation name (e.g.,
r) is accessible within queries via the function VALIDTIME(r) ; its value is
impacted by the correlation credibility and ordering plausibility identically
to the explicit values in the tuple.

10.2 Semantic Extensions

The semantics of TSQL2 is specified in terms of the semantics of SQL-92
[Snodgrass et al. 1996]. Since TSQL2 with tuple valid-time indeterminacy
is an extension of SQL-92 with value valid-time indeterminacy, the major
change is to replace vbSQL in the TSQL2 semantics with vb ind.

TSQL2 has three modes, specified using new reserved words: temporal
upward compatibility, in which only the current state is used, sequenced
semantics, in which the query is applied with SQL semantics at each point
in time, and nonsequenced semantics, in which the table is treated as a
conventional table with an additional period attribute.

The nonsequenced semantics is already dealt with in the rest of the
paper, with the proviso that the correlation credibility may replace the
implicit period timestamp with a determinate value. In temporal upward
compatibility, all tables are snapshot as of now. We use the overlap
operator to determine those tuples valid at now; the operator is already
defined for indeterminate periods. The specified plausibility, or the default
if a plausibility is not specified, is used for the overlap. For the sequenced

Supporting Valid-Time Indeterminacy • 41

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

semantics, a tuple will be considered to be valid at a given time point if the
indeterminate period overlaps with the given time point, using the speci-
fied plausibility.

10.3 Semantics of Constructors

The final change required is support for constructors. A constructor is an
operator that constructs a time value from one or more existing time
values. Common constructors in temporal query languages include First,
which constructs the earliest instant from a pair of instants; Last, which
constructs the latest instant from a pair of instants; and Period, which
constructs a period from a pair of instants. In this section, a general
strategy to support constructors is developed. We first describe a specific
strategy for the Coalesce constructor, and then generalize it to support any
constructor.

10.3.1 Coalescing. The user can specify in ATSQL2 that a relation be
coalesced: tuples with identical values for the explicit attributes (termed
value-equivalent) with timestamps that overlap or meet in valid time are
merged into a single tuple with a timestamp that is the union of the
timestamps of the original tuples. If the periods do not overlap or meet,
then the tuples are unchanged [Böhlen et al. 1996]. The semantic function
Coalesce repeatedly coalesces overlapping pairs, until there is no more
overlap.

In the indeterminate semantics, the coalescing operation must be ex-
tended to handle periods with indeterminacy.9

Indeterminate Coalescing. For two value-equivalent tuples that have
valid-time periods [a,b] and [h,d] that overlap with plausibility 100 (i.e.,
definitely overlap), the indeterminate coalescing of the periods [a,b] and
[h,d] produces the period [s, t] where

s 5 ~min~a*, h*! z min~a*, h*!, Pstarting!

and

t 5 ~max~b*, d*! z max~b*, d*!, P terminating!,

such that

Pstarting~x! 5 max~Fa~x!, Fh~x!! 2 Pstarting~x 2 1!

where @x , min~a*, h*!~Pstarting~x! 5 0!, and

Pterminating~x! 5 P terminating~x 2 1! 2 max~F9b~x!, F9d~x!!,

9This coalesce operator contends with indeterminate attribute values, and so differs from Dey
and Sarkar’s coalescence operation, which handles indeterminate tuples [Dey and Sarkar
1996].

42 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

where @x , min~b*, d*!~Pterminating~x! 5 1!. Fi represents the cumulative
density function associated with Pi, that is, Fi~x! 5 S

k#xPi~k! and F9i is the
complementary cumulative density function. If the periods do not definitely
overlap, then the periods are already coalesced.

While this definition may appear complicated, the underlying idea is
simple. Figure 19(a) shows a probability ‘‘profile’’ for two independent,
overlapping periods. The profile for each is effectively just a plot of the
cumulative and complementary cumulative density functions for the peri-
od’s starting and terminating instants, respectively. Both periods ‘ramp up’
to definite information during their respective starting instants and ‘fall
off’ to no information during the terminating instants. The result of
coalescing the two periods is shown in Figure 19(b). The result is the
‘‘skyline’’ of the two periods. The skyline represents the maximal extent of
both the determinate and indeterminate portions of the periods. This
corresponds to the definition given above, which stipulates that the maxi-
mal cumulative or complementary cumulative density function value is
used.

10.3.2 Implementation of Coalescing. The implementation techniques
developed in Section 8 apply directly to the indeterminate portions of
TSQL2, except for constructors such as coalescing, which require a new
approach. A straightforward implementation of indeterminate coalescing
could be very costly since, in some cases, the operator must dynamically
compute a new probability mass function. Not only would dynamically
computing such functions quickly exhaust the limited space of probability
mass function names (recall from Section 7 that the timestamp formats
limit the number of mass functions to 216 possibilities), but the efficient
implementation of BeforeI would also suffer since it depends upon the
precomputed approximation of the mass function.

Our solution is to accept some information loss during coalescing and
avoid the expense of dynamically computing a mass function by substitut-
ing the missing distribution for the new mass function. In other words, for
two valid-time periods [a,b] and [h,d] which definitely overlap, the imple-
mentation of indeterminate coalescing produces the period [s, t] where

s 5 5 a if for every time t, Fa~t! $ Fh~t!
h if for every time t, Fh~t! $ Fa~t!
~min~a*,h*! z min~a*,h*!, missing! otherwise

Fig. 19. Coalescing two indeterminate periods follows the skyline.

Supporting Valid-Time Indeterminacy • 43

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

and

s 5 5 b if for every time t, F9b~t! $ F9d~t!
d if for every time t, F9d~t! $ F9b~t!
~max~b*, d*! z max~b*, d*!, missing! otherwise

But even this “weakened” version of coalescing is much too expensive,
since the cumulative density functions for two instants must be computed
for each chronon in a period of indeterminacy to determine if one function
dominates another. However, it is easy to determine dominance in some
special, but common, cases. For instance, for a pair of starting instants, if
both instants have the same probability mass function, and one instant’s
period of indeterminacy starts before the other’s ends, then the earlier
instant is dominant. For example, the starting instant (1 z 5, uniform)
dominates the instant (3 z 6, uniform). The implementation of indetermi-
nate coalescing in Coalesce9 only checks for dominance in these special
cases, and substitutes the missing mass function in all other cases, as
shown in Figure 20. Here only the First function is shown; this function
chooses the earliest instant among a pair of instants. The Last function is
analogous.

10.3.3 A General Strategy for Supporting Constructors. The general
strategy for supporting constructors on indeterminate time values mimics
the strategy used to implement First. The indeterminate First constructor
differs from the determinate constructor only when the argument instants
overlap; in which case, a new instant is constructed. While it is trivial to
construct the period of indeterminacy for the new instant from the supports

Fig. 20. Indeterminate Coalescing.

44 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

for the underlying instant, in some cases a new mass function must also be
constructed. But these functions are expensive to construct on the fly.
Therefore, the missing mass function is used instead, although this substi-
tution loses some information.

As an example, the INTERSECToperator can be formalized as follows:

vPERIOD~^inst1&, ^inst2&!INTERSECT PERIOD~^inst3&, ^inst4&!bop 5

PERIOD~Last~v^inst1&bSQL, v^inst3&bSQL!,

First~v^inst2&bSQL, v^inst4&bSQL!!

More complicated constructors can be implemented in terms of First and
Last.

So in general, a constructor will either result in an existing time value or
produce a new time value. The behavior depends on whether the periods of
indeterminacy overlap. If the periods of indeterminacy are disjoint, then
the constructor simply chooses an existing time value. It is only when the
periods overlap that a new time value must be constructed.

10.4 Summary

To support tuple valid-time indeterminacy in the variant of TSQL2 being
proposed for SQL3, few syntactic extensions beyond those discussed for
conventional SQL, presented in Section 4, are needed. The only significant
semantic extension is to support constructors. We speculate that our
approach to valid-time indeterminacy, both the value incompleteness vari-
ety and the tuple valid-time incompleteness variety, can be added in a
similarly straightforward manner to any of the many temporal query
languages proposed in the literature.

11. RELATED WORK

Despite the wealth of research on adding incomplete information to data-
bases [Dyreson 1997; Parson 1996], there are few efforts that address
incomplete temporal information. Much of the previous research in incom-
plete information databases has concentrated on issues related to null
values [Vassiliou 1979; Zaniolo 1984; Codd 1990; Date 1986]. Another
primary research thrust has studied the applicability of fuzzy set theory to
relational databases [Dubois et al. 1988; Zemankova and Kandel 1985;
Prade 1993]. There is also extensive AI literature on integrating various
combinations of probabilistic reasoning, temporal reasoning, and planning;
Kraus and Subrahmanian [1994] provide a nice summary of that literature.

We first place our work in the context of value and tuple incompleteness,
then examine in detail several papers that concern temporal incomplete-
ness.

Information that is valid-time indeterminate is similar to disjunctive
information, especially in the context of deductive databases [Liu and

Supporting Valid-Time Indeterminacy • 45

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Sunderraman 1990]. Disjunctive information is a collection of facts, one (or
more) of which is true. A set of possible chronons is of the exclusive-OR
variety of disjunctive information (only one disjunct is true) [Ola 1992].
Valid-time indeterminacy differs from the above investigations because the
alternatives are ‘‘weighted’’ and the weights are integrated into the query
semantics.

The field of probabilistic databases covers a wide spectrum of different
uses of probabilistic information. Probabilistic weights have been attached
to attribute values to model situations where an attribute value could be
one of several more or less likely values [Barbará et al. 1990; Barbará et al.
1992; Fuhr and Rölleke 1997; Gelenbe and Hebrail 1986; Lakshmanan et
al. 1997; Lee 1992; Tseng et al. 1993]. Probabilistic weights have also been
appended to tuples, where the weight is the probability that the tuple
belongs to the relation [Cavallo and Pittarelli 1987; Dey and Sarkar 1996;
Fuhr and Rölleke 1997; Kornatzky and Shimony 1993b; Kornatzky and
Shimony 1993a; Lakshmanan et al. 1997; Lee 1992; Tseng et al. 1993;
Zimányi 1992]. Decision support systems, vague queries, information re-
trieval and data mining have also utilized probabilistic information [Wong
1982; Fuhr 1990; Henrion and Suermondt 1993; Vasanthakumar et al.
1996]. Our work concerns only probabilities in attribute values and can be
seen as an extension of the Probabilistic Data Model (PDM) [Barbará
1992]. In the PDM, attribute values are sets with weights attached to each
element. The weight is the probability that the corresponding element is
the value of the attribute. Queries use the probabilistic representation in
conjunction with a single user-given ‘‘confidence’’ to compute a result
within the framework of the possible world semantics. The novelty in our
work can be seen in the methods used to retrieve the incomplete informa-
tion and in how that information is represented. In the PDM, each element
in a set of possible values is stored and processed separately. The costs of
the probabilistic operators in PDM are proportional to the number of
alternatives in the set (some of the operations have a cost that is propor-
tional to the square of the number of alternatives).

Dey and Sarkar [1996] extend this data model, in part to render it in first
normal form and to permit a more general join operation. More recently,
Lakshmanan et al. [1997] have extended the PDM to eliminate several of
the assumptions, including independence of elements, in their ProbView
system. In particular, they permit a range of Cartesian product operators
to be defined, with the situation dictating the appropriate strategy.

We could not adopt the PDM approach or its successors to support
temporal indeterminacy, since there might be several million elements in a
set of possible chronons. Representing each alternative with an associated
probability is impractical. Due to the unique nature of valid-time indeter-
minacy, a different approach was required.

We now turn to the literature of temporal incompleteness, which, unlike
our approach, does not employ probabilities.

In the earliest work on incomplete temporal information, an indetermi-
nate instant was modeled with a set of possible chronons [Snodgrass 1982].

46 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Before was extended to return the value unknown, necessitating an exten-
sion to a three-valued logic. Also, a four-valued logic was proposed to model
times and values that are unknown, imprecise, or negative (under the open
world assumption) [Schiel 1987]. Our current approach allows a probability
mass function to be associated with each indeterminate instant, and does
not require a multi-valued logic, though we do use such a logic in the
operational semantics.

Dutta [1989] uses a fuzzy set approach to handle generalized temporal
events. A generalized temporal event is a single event that has multiple
occurrences. For example the event ‘‘Margaret’s salary is high’’ may occur
at various times as Margaret’s salary fluctuates to reflect promotions and
demotions. The meaning of ‘‘high’’ is incomplete because it is not a crisp
predicate. In Dutta’s model all the possibilities for “high” are represented
in a generalized event and the user selects some subset according to his or
her interpretation of ‘‘high.’’ This contrasts with the task of encoding the
type of information we have characterized as valid-time indeterminate. We
view events as having a single occurrence. An indeterminate instant is a
set of alternatives, one and only one of which is the actual time. Every
member in a fuzzy set is always possible, to a greater or lesser extent,
depending on the degree of membership, but always possible (although
some fuzzy databases stipulate by f iat that only one member is possible
[Dubois et al. 1988]. Our approach and that of Dutta’s are representative of
different kinds of temporal incompleteness. We feel that a probabilistic
approach is better suited to modeling valid-time indeterminacy, as formu-
lated in this paper, and that fuzzy set approaches like Dutta’s [Vitek 1983;
Dubois and Prade 1989] are better suited to modeling generalized events.
The two approaches are orthogonal, and the user may pick the one(s) most
appropriate to her application.

Generalized bitemporal elements are defined somewhat differently in
more recent papers [Kouramajian and Elmasri 1992; Kouramajian et al.
1994]. Bitemporal elements combine transaction time and valid time in the
same temporal element. Since TSQL2 also supports transaction time,
valid-time indeterminacy and generalized bitemporal elements differ
mainly in their handling of valid time. In Kouramajian and Elmasri’s
model, both the upper and lower support on a valid time period could be a
set of noncontiguous possible chronons. Unlike valid-time indeterminacy,
no probabilities are used. Since there are no probabilities, the user in
general is limited to querying for answers that are either definite or those
that are possible (or combinations thereof). Generalized valid times are
composed of valid times by the operators of alternation (only one valid time
applies) and/or union (both valid times could apply). We provide no capabil-
ity for ‘‘generalizing’’ valid times to handle alternation or union.

Another proposed model intertwines support for value and temporal
incompleteness [Gadia et al. 1992]. By combining the different kinds of
incomplete information, a wide spectrum of attribute values are simulta-
neously modeled, including values that are completely known, values that
are unknown but are known to have occurred, values that are known if

Supporting Valid-Time Indeterminacy • 47

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

they occurred, and values that are unknown even if they occurred. In our
approach, value incompleteness, tuple incompleteness, and tuple valid-time
indeterminacy are orthogonal. By combining valid-time indeterminacy with
other kinds of incomplete information, we can support each of the kinds of
incomplete information found in Gadia et al., plus others (e.g., fuzzy value
incompleteness). Another difference between our approach and theirs is
that they make no use of probabilistic information. The user cannot express
his or her credibility in the underlying data nor plausibility in the temporal
relationships in the data.

Gadia et al. prove reliability for their model, as we did for ours, in
Section 5.8. They also showed that, except for certain cases of selection,
their operators were maximal. The same holds for our operators. Hence,
both of our models (with the exception of certain cases of selection in their
language) are theoretically sound.

While the possible and definite limits to incomplete temporal information
are well understood, the cost of querying incomplete temporal information
can be prohibitive. Satisfaction of general constraints, that is, a well-
formed formulæ consisting of temporal variables, predicates and Boolean
connectives (including negation), and allowing substitution of indetermi-
nate instants is, not surprisingly, NP-hard [van Beek 1991; Dean and
Boddy 1988].

Koubarakis [1993] showed that by restricting the kinds of constraints
allowed, polynomial time algorithms can be obtained. Koubarakis proposed
a temporal data model with global and local inequality constraints on the
occurrence time of an event. The resulting model supports indefinite
instants. An indefinite instant is a very general kind of instant that
includes indeterminate instants, instants with disjoint sets of possible
chronons, and instants with incompletely specified upper and lower sup-
ports. For instance, we may know that a occurred before b but after 2 PM
(2 PM , a , b), and we may know that b happened before 4 PM. In
Koubarakis’ data model, we can then conclude that a happened between 2
and 4 PM. Koubarakis restricts the kinds of constraints allowed (to
disjunctions of inequalities) and achieves polynomial time complexity for
retrieving information.

Another constraint-based temporal reasoner is LaTeR, which has been
successfully implemented [Brusoni et al. 1995]. LaTeR similarly restricts
the kinds of constraints allowed (to conjunctions of linear inequalities), but
this class of constraints includes many of the important temporal predi-
cates. LaTeR must construct a constraint network during insertion or
updating of temporal information, but uses this network very efficiently
when retrieving information to achieve O~n3! performance.

The primary difference between these constraint-based models and ours
(other than probabilities) is that SQL (like most relational database mod-
els) does not allow inter-tuple constraints. Tuples in SQL relations are
“row-independent”, that is, no information is shared between tuples. Since
the indeterminate data model is based on SQL, it makes no overt provisions

48 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

for sharing indeterminate information between tuples. Only the constraints
given in the query are used to relate tuples. Further, we, like most others,
assume that the variables in a query are independent. Our motivation is to
avoid the expensive computation of dependent probabilities, but the inde-
pendence assumption also yields an O~nr! complexity for evaluating an
unrestricted query consisting of temporal predicates and Boolean connec-
tives (where n is the number of predicates in the query, and r is the
number of tuples). However, constraint-based models are able to model
temporal information that we cannot.

We note that there is little discussion in most of the aforementioned
papers, save LaTeR, on implementation aspects. We feel that both efficient
representations and efficient query-processing algorithms are essential,
especially when the incomplete information is weighted.

12. SUMMARY AND FUTURE WORK

This paper has extended the syntax and formal semantics of SQL to
support valid-time indeterminacy and has described an efficient implemen-
tation for that support. We also showed how the concepts can be applied to
temporal query languages, in particular to the variant of TSQL2 being
proposed for incorporation into SQL3.

We return to the goals enumerated in Section 1. The syntactic extensions
are minimal. In particular, we provide the user with two controls on the
retrieval process: correlation credibility and ordering plausibility. We have
augmented the create table and alter table statements to specify which
attributes incorporate valid-time indeterminacy and to identify which
timestamp format to use, extended the from clause to specify correlation
credibility using an optional with clause, extended the select statement to
specify ordering plausibilities, and added variants to the set statement to
specify default plausibilities and credibilities. Correlation credibility
changes the information available to query processing; it replaces indeter-
minate with determinate information. Ordering plausibility controls the
construction of an answer to a query using the pool of credible information.
A temporal expression is satisfied if there exists a plausible ordering (to the
level specified by the user) that satisfies it. The approach is orthogonal to
those proposed by others to handle value incompleteness and generalized
events (cf. Section 10), has an intuitive semantics (Section 5), retains the
first normal form structure of SQL and TSQL2 (Section 3), refines previ-
ously proposed techniques to handle multiple granularities of time (Section
7), is temporally upward compatible, in that it reduces to SQL’s and
TSQL2’s semantics in the absence of indeterminacy (Section 5.3), reduces
to SQL’s semantics even in the presence of indeterminacy, when the new
constructs are not used (Section 5.6), and has been proven to be both
reliable and maximal (Section 5.8).

While these language extensions are highly expressive, this paper dem-
onstrates that they can be efficiently implemented. We showed how inde-
terminate instants with a uniform probability mass function or mass

Supporting Valid-Time Indeterminacy • 49

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

function that is missing can be represented in only 64 bits in most cases;
for user-defined distributions the common representation is only 96 bits
(Section 7). The operational semantics was shown to be correct (Section
5.8); the rod-counting algorithm is efficient (Section 8.1.4), and the under-
counting of this algorithm is minimal (also Section 8.1.4). We implemented
the functions required by the altered semantics (Section 8), and demon-
strated that the implementation roughly doubles the CPU cost of a query
when indeterminacy is present and plausibilities and credibilities less than
100 are specified, while having little impact on its disk I/O time (Section 9).

This paper only considers the select, create table, and alter table state-
ments of SQL and TSQL2. The modification statements (append, delete,
and update) as well as views, integrity constraints, assertions, and cursors,
can be extended in an analogous manner. The approach espoused here has
been adopted in TSQL2 [Dyreson and Snodgrass 1995b].

One important area of future research is the extension of indexing
methods to support indeterminate values. Most extant indexing approaches
assume a total order on the underlying domain. Only for an ordering
plausibility of 100 does such a total order exist for indeterminate instants
(cf. Section 5.4.1). Indexing methods need to be extended to support
arbitrary ordering plausibilities, to be specified at query time.

Algorithm improvements on the functions discussed in Section 8 are
certainly possible. While such improvements might reduce execution time
considerably in special cases, we doubt that they will have much impact on
the average case.

A useful extension of the current work would be to use periods instead of
values to express plausibility. For instance, the user could constrain
retrieval to tuples that ‘‘overlap March 1984’’ to ‘‘within a year’’ (this has
been termed a ‘‘band join’’ [DeWitt et al. 1991] or a ‘‘fuzzy temporal
equi-join’’ [Leung and Muntz 1991]). This possibility can be seen as an
extension of the present paper, specifically, as a refinement of the BeforeI
operation.

Another useful extension would be to annotate the returned periods with
a ‘‘plausibility ranking,’’ thereby obviating the need for a plausibility
clause. Computing such a ranking would complicate query evaluation.

Finally, it is always useful to consider increasing the expressive power of
the data model and query language. In particular, one important assump-
tion we make throughout is that tuples are row-independent, with no
information shared between indeterminate tuples. Most of the other ap-
proaches that utilize probabilities to model various flavors of incomplete-
ness make this assumption as well, because computing dependent probabil-
ities in the inner loop of query processing is just too expensive. We also
assume that indeterminate instants are modeled by contiguous sets of
possible chronons. We do not support noncontiguous sets that could model
indeterminate instants such as ‘‘it happened yesterday morning or this
morning.’’ We exploit both of these assumptions to achieve efficiency in
representation and in query processing. We conjecture that relaxing either
of these assumptions will cause the query evaluation complexity to return

50 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

to cubic (or worse), thereby rendering the performance unacceptable for
many temporal database applications.

APPENDIX: Proofs of Theorems

THEOREM 1. vWHERÊpredicate&b ind~1, r! is reliable.

PROOF. For any where clause W, for all r9 { C~r!, let c 5 vWbSQL

~r9@prime#!. Then @t9 { r9~t9 { c f v^predicate&bSQL~t9!!. From the defini-
tion of vWb ind,

@t9 { r9~t9 { c f ~?t { r~t9 { C~t! ∧ t { vWb ind~1, r!!!!

From the definition of C, it follows that c { C~vWb ind~1, r!!. e

THEOREM 2. vWHERÊpredicate&b ind~1, r! is maximal.

PROOF. We need to show @^where clause&W, @c { C~vWb ind~1, r!!,
?r9 { C~r!~c 5 vWbSQL~r9!!. For the possible interpretation,

@^where clause&W, @c { C~vWb ind~1, r!!

~@t9 { c, ?t { r~?t99 { C~t! ∧ vPbSQL~t99!!!.

From the definition of C, it follows that ?r9 { C~r!~c 5 vWbSQL~r9!!. e

THEOREM 3. vb ind and vbop agree on the possible and definite interpreta-
tions.

PROOF. For the definite bound ~g 5 100!, we need to show

@^predicate&P, @r, @d~vWHEREPb ind~100, r!

5 $tt { r ∧ T { vPbop~100, r!%!.

From the definition of vb ind, this is equivalent to @t@c { C~t!~vPbSQL~c! f
T { vPbop~100, t!!. We show this by induction on the Boolean connectives
in P, after replacing P with its equivalent in terms of Before (or BeforeI for
vbop), ∧ and ¬ .

Basis: vPbSQL is Before(a,b) where a and b are (instant) values in the
tuple t. From the definition of the completion of a tuple, we must show

~@ca { C~a!, @cb { C~b!~ca # cb!! f T { BeforeI~a, b, 100!.

The left-hand side implies that Pr[a # b] 5 1.00, so BeforeI~a, b, 100!
5 $T%.

Supporting Valid-Time Indeterminacy • 51

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Induction: Assume that @t@c { C~t!~vPbSQL~c! f T { vPbop~100, t!! holds
for P containing i 2 1 Boolean connectives. We need to show that this
holds for P containing i connectives.

(1) P is P1 ∧ P2. Applying the definitions of vbSQL and vbop, the following
holds from the inductive hypothesis.

@t@c { C~t!~vP1bSQL ∧ vP2bSQL~c!

f T { ~vP1bop~100, t! ù vP2bop~100, t!!!

It then follows that the inductive hypothesis also holds for P.

(2) P is ¬ P1. Again, applying the definitions to the inductive hypothesis,

@t@c { C~t!~¬ vP1bSQL! f F { ~vP1bop~100, t!!.

This shows that the two semantics agree for P containing i predicate
connectives.

For the possible bound ~g 5 1!, we need to show

@^predicate& P, @r, @d~vWHEREPb ind~1, r! 5 $tt { r ∧ T { vPbop~1, r!%!.

This is equivalent to @t?c { C~t!~vPbSQL~c! f T { vPbop~1, t!!. Compar-
ing this to the analogous formula in the definite portion of this proof, note
that @c, and g 5 100 have been replaced with g 5 1.

Again, we show this by induction on the number of Boolean connectives
in P.

Basis: vPbSQL is Before(a, b) where a and b are (instant) values in the
tuple t. From the definition of the completion of a tuple, we must show

~?ca { C~a!, @cb { C~b!~ca # cb!! f T { Before~a, b, 1!.

Applying the definition of BeforeI, the right-hand side is equivalent to
Pr@a # b# . 0 (here we use Pr*@ . . . # 5 0.01). From the left-hand side,
we know that Pr@a 5 ca# . 0 and Pr@b 5 cb# . 0, so Pr@a $ b# . 0.
Hence,

~?ca { C~a!, ?cb { C~b!~ca # cb!!

f Pr@a 5 ca# . 0 ∧ Pr@b 5 cb# . 0 ∧ ca # cb

f Pr@a $ b# . 0

f T { BeforeI~a, b, 1!

f T { vPbop~1, t!.

52 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

Induction: We utilize a similar induction hypothesis as before, and the
inductive steps follow naturally. e

THEOREM 4. vSb ind~d, g, r! is monotonic in g.

PROOF. As the semantics of each clause depends only on one parameter,
the proof proceeds in two parts: (1) show that v^where clause&b ind is
monotonic in g, and (2) show that v^target list&b ind is monotonic in g.

@t@^predicate&P~g $ g9 f C~vPbop~g, t!! # C~vPbop~g9, t!!!.

We prove this by induction on the Boolean connectives in p, after replacing
p with its equivalent, as discussed in Section 5.4.2.

Basis: vPbop is BeforeI~a, b, g!. This follows from the definition of
BeforeI and the monotonicity of Pr.

Induction: Assume that the above holds for P containing i 2 1 Boolean
connectives.

(1) P is P1 AND P2, which is replaced with P1 ù P2, which is monotonic
when P1 and P2 are monotonic.

(2) P is NOTP1, which is replaced with $x~¬ x! { vPbop~g, r!%. Again, this
is monotonic if P1 is monotonic.

To show (2), we observe that v^target list&b ind utilizes constructors based
on BeforeI. By Theorem 3, vb ind is an equivalent semantics, and hence from
(1), just shown, (2) follows. e

THEOREM 5. The kth pivot will count P2/ 2 log2~k!11 pairs.

PROOF. By choosing the rod corresponding to half of the remaining rods,
the algorithm counts half the pairs on the first pivot, that is, it counts P2/ 2
pairs. On the second and third pivots, it counts half of half of the remaining
pairs, or P2/8 pairs per pivot, assuming “breadth-first” recursion. On the
fourth through seventh pivots, it counts half of half of half of the remaining
pairs, or P2/32 pairs. So, in general, the k th pivot will count P2/ 22·log2~k!11

pairs. In the worst case, 2P pivots are required. e

THEOREM 6. The undercount is less than 2/P.

PROOF. First consider the error once a pivot has been chosen. The error
is the rods in the other row of rods that remain uncounted. The uncounted
rods are those that overlap the pivot. These rods are uncounted because it
is unknown how the probability mass is distributed within each rod;
consequently, it is impossible to determine whether the mass is before or
after the mass in the pivot. Figure 21 shows the rods that are uncounted for
an example pivot; the rods that are either partially or wholly within the
dotted lines are not counted. But how many pairs of rods possibly overlap?
We claim that there can be at most 2P 2 1 pairs that overlap.

Supporting Valid-Time Indeterminacy • 53

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

We demonstrate this claim by modeling the overlapping rods with an
undirected graph. Let each rod be a node in a graph. Add an edge between
each pair of rods that overlaps. Observe that the edges cannot ‘‘cross’’ each
other, that is, the graph is planar. Now count the total number of edges in
the graph. Choose the first, or ‘‘leftmost’’ edge in the graph. Since edges
cannot cross, at least one node on this edge is a sink, unconnected to any
other nodes by a different edge. Eliminate both the node and the edge.
Repeat this process, always choosing the ‘‘leftmost’’ remaining edge, until
there are no more edges. Initially there are 2P nodes. One node is
eliminated at every step along with one edge. At least one node remains
after the final edge is removed. Consequently, at first, there were at most
2P 2 1 edges.

Each edge represents a pair of rods that overlap, corresponding to a mass
of 1/P2 that remains uncounted. Since there are at most 2P 2 1 edges, the
total missing mass is less than 2/P. For a precision of 28, the total error is
less than 1%. e

ACKNOWLEDGMENTS

We wish to thank Merrie L. Brucks, Saumya Debray, Peter J. Downey,
Christian S. Jensen, V. S. Subrahmanian, and the anonymous reviewers for
their insightful comments and contributions.

REFERENCES

ALLEN, J. F. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26,
11 (Nov.), 832–843.

ARIAV, G. 1986. A temporally oriented data model. ACM Trans. Database Syst. 11, 4
(Dec.), 499–527.

BAIR, J., JENSEN, C. S., SNODGRASS, R. T., AND BOEHLEN, M. 1997. Notions of upward
compatibility of temporal query languages. Bus. Inform. 39, 1 (Feb.), 25–34.

Fig. 21. The rods within the dotted lines are the undercount for the pivot.

54 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

BARBARÁ, D., GARCÍA-MOLINA, H., AND PORTER, D. 1990. A probabilistic relational data
model. In Proceedings of the International Conference on Extending Database Technology:
Advances in Database Technology (Venice, Italy, March 1990), 60–74.

BARBARÁ, D., GARCÍA-MOLINA, H., AND PORTER, D. 1992. The management of probabilistic
data. IEEE Trans. Knowl. Data Eng. 4, 5 (Oct.), 487–502.

BELNAP, N. 1977. A useful four-valued logic. In Modern Uses of Many-valued Logic. G.
Epstein and J. M. Dunn, Eds. D. Reidel Publishing Co., Inc., New York, NY., 8–37.

BÖHLEN, M. H., SNODGRASS, R. T., AND SOO, M. D. 1996. Coalescing in Temporal Databases.
In Proceedings of the International Conference on Very Large Data Bases (Mumbia, India,
Sept. 1996), 180–191

BRUSONI, V., CONSOLE, L., TERENZIANI, P., AND PERNICI, B. 1995. Extending temporal rela-
tional databases to deal with imprecise and qualitative temporal information. In Proceed-
ings of the International Workshop on Recent Advances in Temporal Databases (Zurich,
Switzerland, Sept. 1995), S. Clifford and A. Tuzhlin, Eds. Springer-Verlag, New York, NY,
3–22.

CAVALLO, R. AND PITTARELLI, M. l987. The theory of probabilistic databases. In Proceed-
ings of the International Conference on Very Large Data Bases (Brighton, England, Sept.
1987), P. Hammersley, Ed. IEEE Computer Society Press, Los Alamitos, CA, 71–81.

CLIFFORD, J., DYRESON, C. E., ISAKOWITZ, T, JENSEN, C. S., AND SNODGRASS, R. T. 1997. On
the semantics of ’Now‘ in databases. ACM Trans. Database Syst. 22, 2 (June), 215–254.

CLIFFORD, J. AND RAO, A. 1987. A simple, general structure for temporal domains. In
Proceedings of the Conference on Temporal Aspects in Information Systems. Association
Francaise pour la Cybernetique Economique et Technique, Montreuil, France, 23–30.

CODD, E. F. 1990. Missing Information. Addison-Wesley Publishing Co., Inc., Redwood
City, CA.

DATE, C. J. 1986. Null Values in Database Management. Addison-Wesley Publishing Co.,
Reading, MA.

DEAN, T. AND BODDY, M. 1988. Reasoning about partially ordered events. Artif. Intell. 36,
3 (Oct.), 375–399.

DEWITT, D., NAUGHTON, J., AND SCHNEIDER, D. 1991. An evaluation of non-equijoin algo-
rithms. In Proceedings of the International Conference on Very Large Data Bases. IEEE
Computer Society Press, Los Alamitos, CA, 443–452.

DEY, D. AND SARKAR, S. 1996. A probabilistic relational model and algebra. ACM Trans.
Database Syst. 21, 3 (Sept.), 339–369.

DUBOIS, D. AND PRADE, H. 1989. Processing fuzzy temporal knowledge. IEEE Trans. Syst.
Man Cybern. 19, 4, 729–744.

DUBOIS, D., PRADE, H., AND TESTAMALE, C. 1988. Handling Incomplete or Uncertain Data
and Vague Queries in Database Applications. Plenum Press, New York, NY.

DUTTA, S. 1989. Generalized events in temporal databases. In Proceedings of the Fifth
International Conference on Data Engineering (Los Angeles, CA, Feb. 1989), 118–126.

DYRESON, C. E. 1994. Valid-time indeterminacy. PhD thesis. University of Arizona, Tuc-
son, AZ.

DYRESON, C. E. 1997. A bibliography on uncertainty management in information systems.
In Uncertainty Management in Information Systems: From Needs to Solutions, A. Motro, Ed.
Kluwer Academic Publishers, Hingham, MA., 415–458.

DYRESON, C. E. AND SNODGRASS, R. T. 1993. Valid-time indeterminacy. In Proceedings of
the International Conference on Data Engineering (Vienna, Austria, April 1993), 335–343.

DYRESON, C. E. AND SNODGRASS, R. T. 1995a. A timestamp representation. In The TSQL2
Temporal Query Language, R. T. Snodgrass, Ed. Kluwer Academic Publishers, Hingham,
MA., 475–499.

DYRESON, C. E. AND SNODGRASS, R. 1995b. Temporal indeterminacy. In The TSQL2 Tem-
poral Query Language. R. T. Snodgrass, Ed. Kluwer Academic Publishers, Hingham, MA,
327–346.

DYRESON, C. E., SOO, M., AND SNODGRASS, R. T. 1995. The Data Model for Time. In The
TSQL2 Temporal Query Language. R. T. Snodgrass, Ed. Kluwer Academic Publishers,
Hingham, MA.

Supporting Valid-Time Indeterminacy • 55

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

FUHR, N. 1990. A probabilistic framework for vague queries and imprecise information in
databases. In Proceedings of the International Conference on Very Large Data Bases
(Brisbane, Australia, August 13–16, 1990), D. McLeod, R. Sacks-Davis, and H. Schek,
Eds. Morgan Kaufmann Publishers Inc., San Francisco, CA, 696–707.

FUHR, N. AND RÖLLEKE, T. R. 1997. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Trans. Inf. Syst. 15, 1 (Jan.), 32–66.

GADIA, S. K., NAIR, S., AND POON, Y.-C. 1992. Incomplete information in relational temporal
databases. In Proceedings of the International Conference on Very Large Data Bases
(Vancouver, Canada, Aug. 1992). IEEE Computer Society Press, Los Alamitos, CA.

GELENBE, E. AND HEBRAIL, G. 1986. A probability model of uncertainty in data bases. In
Proceedings of the International Conference on Data Engineering (Los Angeles, CA, Feb.
1986). IEEE Computer Society Press, Los Alamitos, CA, 328–333.

GOUDSMIT, S. AND CLAIRBORNE, R. 1966. Time. Times Books, New York, NY.
HERION, M. AND SUERMONDT, J. 1993. Probabilistic and Bayesian representations of uncer-

tainty and information systems: A pragmatic introduction. In Proceedings of the Workshop
on Uncertainty Management in Information Systems: From Needs to Solutions (Avalon,
Santa Catalina, CA, April 1993), 71–90.

JENSEN, C. S., AND DYRESON, C. E., EDS. 1998. A consensus glossary of temporal database
concepts, February 1998 version. In Temporal Databases—Research and Practice, O.
Etzion, S. Jajodia, and S. Sripada, Eds. Springer-Verlag, Berlin, Germany, 367–405.

KORNATZKY, Y. AND SHIMONY, S. 1993a. A probabilistic object-oriented data model. Tech
Rep. FC 93-04. Ben-Gurion University, Negev, Israel.

KORNATZKY, Y. AND SHIMONY, S. 1993b. A probabilistic spatial data model. In Proceedings
of the DEXA Conference (Prague, Czech Republic, Sept. 1993).

KOUBARAKIS, M. 1993. Representation and querying in temporal databases: The power of
temporal constraints. In Proceedings of the International Conference on Data Engineering
(Vienna, Austria, April 1993), 327–334.

KOURAMAJIAN, V. AND ELMASRI, R. 1992. A generalized temporal model. Tech. Rep. Univer-
sity of Texas at Arlington, Arlington, TX.

KRAUS, S. AND SUBRAHMANIAN, V. S. 1994. Multiagent reasoning with probability, time and
beliefs. Int. J. Intell. Syst. 10, 5, 459–499.

LAKSHMANAN, V. S., LEONE, N., ROSS, R., AND SUBRAHMANIAN, V. S. 1997. A flexible probabi-
listic database system. ACM Trans. Database Syst. 22, 3 (Sept.), 419–469.

LEE, S. K. 1992. An extended relational database model for uncertain and imprecise
information. In Proceedings of the International Conference on Very Large Data Bases
(Vancouver, Canada, Aug. 1992). IEEE Computer Society Press, Los Alamitos, CA.

LEUNG, T. Y. AND MUNTZ, R. 1991. Temporal query processing and optimization in multipro-
cessor database machines. Tech. Rep. CSD-910077. University of California at Los Ange-
les, Los Angeles, CA.

LIPSKI, J. 1979. On semantic issues connected with incomplete information databas-
es. ACM Trans. Database Syst. 4, 3 (Sept.), 262–296.

LIU, K.-C. AND SUNDERRAMAN, R. 1990. Indefinite and maybe information in relational
databases. ACM Trans. Database Syst. 15, 1 (Mar.), 1–39.

MELTON, J. 1996. SQL/Temporal. Tech. Rep. ISO/IEC JTC 1/SC 21/WG 3/DBL-MCI-012.
MELTON, J. AND SIMON, A. R. 1993. Understanding the New SQL: A Complete Guide. Mor-

gan Kaufmann series in data management systems. Morgan Kaufmann Publishers Inc.,
San Francisco, CA.

MOTRO, A. 1990. Imprecision and incompleteness in relational databases: Survey. Inf.
Softw. Technol. 32, 9 (Nov.), 579–588.

OLA, A. 1992. Relational databases with exclusive disjunctions. In Data Engineering
(Tempe, AZ, Feb. 1992), 328–336.

PARSON, S. 1996. Current approaches to handling imperfect information in data and knowl-
edge bases. IEEE Trans. Knowl. Data Eng. 8, 3, 353–372.

PELTEY, B. W. 1991. Time and frequency in fundamental metrology. Proc. IEEE 79, 9
(July), 1070–1077.

56 • C. E. Dyreson and R. T. Snodgrass

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

PRADE, H. 1993. Annotated bibliography on fuzzy information processing. In Readings on
Fuzzy Sets in Intelligent Systems, H. Prade, D. Dubois, and R. Yager, Eds. Morgan
Kaufmann Publishers Inc., San Francisco, CA.

SCHIEL, U. 1987. Representation and retrieval of incomplete and temporal information.
Tech. Rep. DSC-02/87. Universidade Federal Da Paraiba, Paraiba, Brazil.

SNODGRASS, R. T. 1982. Monitoring distributed systems: A relational approach. Ph.D.
dissertation. Carnegie Mellon University, Pittsburgh, PA.

SNODGRASS, R. T., BÖHLEN, M. H., JENSEN, C. S., AND KLINE, N. 1996. Adding valid time to
SQL/Temporal. Tech. Rep. Change Proposal ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/
WG3 DBL MAD-146r2.

SNODGRASS, R. T. 1995. The Temporal Query Language TSQL2. Kluwer Academic Publish-
ers, Hingham, MA.

SOO, M. D., SNODGRASS, R., DYRESON, C., JENSEN, C. S., AND KLINE, N. 1992. Architectural
extensions to support multiple calendars. Tech. Rep. 32. University of Arizona, Tucson,
AZ.

SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A system for building customized program
analysis tools. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Orlando, FL, June 20–24, 1994). ACM Press, New
York, NY, 196–205.

TANSEL, A., CLIFFORD, J., GADIA, S., JAJODIA, S., SEGEV, A., AND SNODGRASS, R.,
Eds. 1993. Temporal Databases: Theory, Design, and Implementation. Benjamin-Cum-
mings Publishing Co., Inc., Redwood City, CA.

TSENG, F. S. C., CHEN, A. L. P., AND YANG, W.-P. 1993. Answering heterogeneous database
queries with degrees of uncertainty. Distrib. Parallel Databases 1, 3 (July), 281–302.

VAN BEEK, P. 1991. Temporal query processing with indefinite information. Art. Intell.
Med. 3, 6 (Dec.), 325–339.

VASANTHAKUMAR, S. R., COLLAN, J. P., AND CROFT, W. B. 1996. Integrating INQUIRY with
an RDBMS to support text retrieval. IEEE Data Engineering 19, 1, 24–33.

VASSILIOU, Y. 1979. Null values in database management—a denotational semantics ap-
proach. In Proceedings of the ACM SIGMOD International Conference on the Management
of Data (New York, May 1979). ACM Press, New York, NY, 162–169.

VITEK, M. 1983. Fuzzy information and fuzzy time. In Proceedings of the IFAC Symposium
on Fuzzy Information, Knowledge Representation and Decision Analysis (Marseille, France,
1983), 159–162.

WONG, E. 1982. A statistical approach to incomplete information in database sys-
tems. ACM Trans. Database Syst. 7, 3 (Sept.), 470–488.

ZANIOLO, C. 1984. Database relations with null values. J. Comput. Syst. Sci. 28, 142–166.
ZEMANKOVA, M. AND KANDEL, A. 1985. Implementing imprecision in information systems.

Inf. Sci. 37, 107–141.
ZIMÁNYI, E. 1992. Incomplete and uncertain information in relational databases. Ph.D.

dissertation. Editions de l’Universite de Bruxelles, Brussels, Belgium.

Received: December 1996; revised: June 1997; accepted: June 1997

Supporting Valid-Time Indeterminacy • 57

ACM Transactions on Database Systems, Vol. 23, No. 1, March 1998.

