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Mapping the Interface Description Language Type 
Model into C 

Abstract-The Interface Description Language (IDL) is a notation 
for describing the characteristics of data structures passed among col- 
lections of cooperating processes in a programming environment. In 
this paper we discuss a mapping from IDL to C data structures and 
macro definitions that supports the full language and is type safe and 
runtime efficient, but is not particularly compile-time efficient nor easy 
to use. We then propose that the mapping be performed in a new pre- 
processor, thereby achieving all five goals. 

Irzdex Terms-Interface Description Language (IDL), intermediate 
representation, programming environment, type model. 

I. INTRODUCTION 
HE Interface Description Language (IDL) is a nota- T tion for describing the characteristics of data struc- 

tures passed among a collection of cooperating processes, 
such as the phases of a compiler [15], [16], [19], [29]. 
Abstract data types such as sets and sequences for any 
type, complete with all necessary data declarations and 
data manipulation routines, are supported by IDL. The 
best known IDL specification is Diana, the defacto stan- 
dard intermediate representation of Ada programs [8]. 
Diana has been used in most Ada compilers, including 
those implemented at Bell Labs, Burroughs, the Univer- 
sity of California at Berkeley, Intermetrics, the Univer- 
sity of Karlsruhe, Rolm, Soffech, and Verdix. A tool, 
the IDL translator, maps these descriptions into code 
fragments in one of several target programming lan- 
guages. These code fragments contain declarations of data 
structures in the target programming language that are 
equivalent to those described in the IDL specification. The 
code fragments also define utilities for in-core manipula- 
tion and input and output of instances of the data struc- 
tures. The user writes programs in terms of the target lan- 
guage data declarations and utilities produced by the IDL 
translator. These programs process instances of the IDL- 
specified data structures residing on external storage. IDL 
has been used to specify intermediate representations 
communicated between phases of various compilers, and 
has found application in other tools (e.g., a cross refer- 
encer, a monitor, and an assertion checker). 
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The problem addressed by this paper is how to map the 
IDL structure specifications into data structure declara- 
tions of a particular target language, the C programming 
language [12]. The primary goals were as follows. 

The mapping should provide language coverage, in 
that it supports the full IDL language as detailed in its 
formal definition [ 191. 

The mapping should be type safe: violations of the 
IDL type model made by the programmer, when using the 
C types generated from the IDL specifications, should re- 
sult in violations of the C type model and be flagged by 
the C compiler. At the same time, operations that are al- 
lowed in the IDL type model should be permitted by the 
C compiler. We effectively require a particular isomor- 
phism between the two type models. 

Several secondary goals for this mapping were also 
identified: 

The mapping should be compile-time eficient: the 
mapping should not impose substantial resource require- 
ments on the C compiler. 

The mapping should be runtime eficient, both in 
space and time. 

The mapping should present a good user interface to 
the C programmer: the syntax for manipulating IDL data 
should be natural and not require knowledge of imple- 
mentation details, the compile and runtime error mes- 
sages should be informative, and the C representation 
should be alterable without necessitating widespread 
changes in the programmer’s code. 

Each criterion alone is easy to satisfy; addressing all 
five in a satisfactory fashion is surprisingly difficult. 

There have been several attempts to extend the power 
of data declarations in existing languages (e.g., exten- 
sions to Lisp [20], to Modula-2 [27], and to C [33]). IDL 
differs from these efforts in that it is language-indepen- 
dent, requiring the target language interface designer to 
effect an adequate mapping of the IDL constructs onto the 
target language. There has been relatively little written on 
representations in target languages of IDL structures. 
General representation strategies have been suggested for 
representing IDL structures [8], [19]. The use of Diana 
as an intermediate representation [ 231, [36], variants of 
Diana [4], [9], and tools for using Diana (211, [22] have 
been investigated. Diana structures have been mapped to 
Ada in the Ada-In-Ada compiler [35] and to C in the Ada 
Breadboard Compiler (ABC) [37] and the Berkeley Ada 
Compiler [40]. The Diana Package [24] is the component 
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of the ABC system that provides data types, data opera- 
tions, and inputioutput functions for Diana. It is based on 
some of the implementation options given in the Diana 
Reference Manual (DRM) [8]. The major goal of the 
Diana Package was to quickly implement a prototype 
which realized the specifications in the DRM. In general, 
efficiency was not considered. The Berkeley Ada Com- 
piler used the ABC to study implementation techniques 
for Ada, including an efficient runtime representation of 
Ada programs. The only change to the Diana Package was 
reducing the size of the Diana representation by using var- 
iable sized nodes rather than the fixed size nodes used in 
the ABC. In all three compilers, the representations were 
generated by hand rather than automatically as in our sys- 
tem. 

PLUM is a package for managing abstract data types 
specified in a language resembling IDL [25], [26]. Its tar- 
get language is C.  It supports the dynamic definition of 
data structures, provides readers and writers, maintains a 
history record of modifications to instances, allows op- 
erations to be undone and redone using the history, and 
provides managers for significant events and for monitor- 
ing instances. 

Finally, Graphite is a tool that takes a structure speci- 
fication similar to IDL and produces two kinds of inter- 
face packages in Ada, one that permits specification mod- 
ifications without requiring modification or even 
recompilation of user code, and one that is less flexible 
but is more efficient at run-time [5]. 

Our approach is similar to these other efforts in that we 
map an IDL specification to a target module. specifi- 
cally, C macros, declarations, and functions. We insist 
on supporting the full IDL language and on ensuring com- 
plete type safety. Within those constraints, we then tried 
to make the mapping compile-time efficient, runtime ef- 
ficient, and user-friendly. 

The remainder of this paper is organized as follows. 
The second section discusses properties of the IDL lan- 
guage, emphasizing its type model. Further details on IDL 
may be found elsewhere [16], [19], [29]. Section 111 de- 
scribes the C data structures generated from IDL structure 
specifications. The fourth section discusses type checking 
within the C representation. The last sections give an 
evaluation of the system, list future work, and propose an 
extension that addresses the remaining problems. 

Throughout, we compare our implementation with the 
modified Diana Package (incorporating the change from 
fixed size to variable sized nodes) of the Ada Breadboard 
Compiler, with the Ada representation in the Ada-In-Ada 
compiler, with the proposed Ada package specification in 
the DRM, with PLUM, and with Graphite. For the re- 
mainder of the paper, we use “ABC” to refer to the mod- 
ified Diana Package of the Ada Breadboard Compiler 
rather than to the compiler itself. IDL types and keywords 
are in a boldface sans serif font; C types are in a sans 

11. IDL SPECIFICATIONS 
IDL encompasses four aspects in its definition: con- 

structs for specifying static data structures, constructs for 
specifying dynamic computation, constructs for specify- 
ing assertions, and a way to represent structure instances 
in a machine and language independent fashion. Only the 
first two aspects are relevant to the topic of this paper. 
We discuss each below, then examine the type model im- 
posed by the language. 

A .  Specifjling Data Structures with IDL 
Structures are specified in IDL as directed graphs of 

attributed nodes. These structures encompass many of the 
data structures found in procedural programming lan- 
guages, and are especially useful in specifying data struc- 
tures employed by compilers. IDL provides four basic 
types, four kinds of structured types, and an escape mech- 
anism (private types). The IDL basic types are named by 
the IDL keywords Boolean, Integer, Rational, and 
String. The IDL structured types are nodes (named col- 
lections of zero or more named values called attributes 
that the user wishes to treat as a unit), classes (a collection 
of node types sharing common aspects), sets (an unor- 
dered collection of object of a type; sets may not contain 
duplicates), and sequences (an ordered collection of ob- 
jects of a type; sequences may contain duplicates). Attri- 
butes actually hold the data values; nodes are a grouping 
device. The domain of values that an attribute can hold is 
specified by its type. An attribute type can be a basic type, 
a structured type, or a node or class type. The IDL system 
automatically supplies run-time support routines to ma- 
nipulate sets and sequences in accordance with their ex- 
pected behavior. An example of a node declaration is 
shown below. 

function = >name: String, 
parameters:Seq Of formal-param- 

Attributes having a node or class type allow directed 
graphs to be specified. Nodes can be referenced by sev- 
eral other nodes, permitting arbitrary sharing. 

A class is a collection of nodes sharing common as- 
pects. The elements of the class are called its members. 
An example of a class declaration is shown in Fig. 1. 

The members of a class that are listed in its declaration 
are said to be direct mernbers. In  the example above, the 
“assignment” node, the “function” node, and the 
“loop” class are the direct class members of the “s ta te-  
ment” class. The members of the ‘‘loop’’ class are also 
considered to be members of the “statement” class. 
These members, the “forloop” and “whileloop” nodes, 
are indirect members of the class. 

The definition of IDL does not permit cycles in the class 
hierarchy; no class may be a direct or indirect class mem- 
ber of itself. However, a class may be the type for an 

eter; 

serif font. attribute contained in the class, thus permitting recursive 
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statement ..= . .  assignment I function I loop; 
statement => spos: sourceposition; 
loop : :=  forloop I whileloop; 
booleanExpression ::= assignment I variable; 

Fig. I .  Class type declaration 

definitions. The distinction is one of type versus instance: 
the structure (type) cannot exhibit cycles, but an instance 
of that structure, composed of nodes linked through their 
attributes, may form an arbitrary graph. 

Attributes associated with a class are propagated to all 
members of the class. Such attributes comprise the com- 
mon aspects shared by nodes of the class. These attributes 
will appear in the node and class members as if they were 
associated directly with the node or subclass. An example 
of this is shown using the statement class in Fig. 1, 
where the attribute spos is propagated to the assign- 
ment, function, forloop, and whileloop nodes. This 
allows the user to make a clear statement of the similari- 
ties among the member nodes of a class and helps avoid 
unintentional differences. 

The class concept in IDL is similar to that of the same 
name in Simula-67 [ 2 ] ,  Smalltalk [7]. or C +  + (331. All 
support the definition of a hierarchical collection of classes 
(IDL and Smalltalk allow multiple hierarchies) with at- 
tribute inheritance down the hierarchy. They differ in that 
IDL is completely declarative, whereas the other lan- 
guages allow procedures to be attached to classes. A sec- 
ond difference is that IDL emphasizes the automatic con- 
struction of readers and writers of structure instances; the 
other languages require the user to implement the readers 
and writers. This task is at best tedious and repetitive, if 
performance is not an issue, and at worst quite complex, 
if high efficiency is required. 

Private types allow a special representation not sup- 
ported by IDL to be used for a particular type. These types 
are effectively an escape mechanism to allow one to use 
specific representations in the target language. This con- 
cept is distinct from private types in Ada which allow the 
user to define an abstract type [41]. Six statements. in any 
order, are required [31]: 

Type Source Posi t i on; 
For SourcePosition Use Package position; 
For SourcePosition Use External Integer; 
For SourcePosition Use Size 32 Bits; 
For SourcePosition Use Alignment 32 Bits; 
For SourcePosition Use Name sourcepos; 

The first statement declares the private type; the second 
specifies the module name (“position”); the third state- 
ment specifies the external representation of the type ( in  
this case, as an integer); and the fourth and fifth specify 
the size and alignment of the internal representation. An 
optional sixth statement specifies the name of internal type 
(“sourcepos”); the declaration of sourcepos is pro- 

vided in the position module. The module must define a 
function which maps an instance of the type in the exter- 
nal representation into the internal representation, and an- 
other function which maps from the internal representa- 
tion into the external representation. 

All node and class declarations in an IDL specification 
are grouped into named collections called structures. An 
example of a structure specification is 

Structure Example Root Statement Is 

End 
. . .  

The root of a structure is a node or class from which all 
other nodes and classes must be reachable, in that it must 
be possible to trace a path from the root node or class to 
all other nodes and classes declared in the structure. A 
path is traced through attributes of nodes and classes and 
through members of classes. At run-time, the root of a 
structure serves much like the root of a tree (although in- 
stances of structures are generally graphs). Actual in- 
stances of the IDL-specified data structures, whether in- 
ternal to a program or on external storage, consist of an 
instance of the root node or class with instances of the 
other nodes or classes that are reachable from the root. 

B. Specibing Processes with IDL 

A process is the IDL model for a computation. An in- 
stance of a process reads and writes instances of IDL- 
specified data structures through a collection of ports. 
There are two kinds of ports: Pre ports for input and Post 
ports for output. Each process manipulates a data struc- 
ture termed the invariant that is the union of all port data 
structures used in that process. A target language and tar- 
get machine must also be specified. Fig. 2 displays an 
example process. 

Processes in IDL are similar to processes in the Unix 
model in which each input and output port is a stream. 
The major difference is that in IDL the streams are typed. 
Several enhancements to the IDL process model, pro- 
posed elsewhere [ 2 8 ] ,  are beyond the scope of this paper. 

C. The IDL Type Model 

IDL is a strongly-typed language. The IDL type model 
places the following restrictions on the operations per- 
mitted on instances of IDL structures while they are being 
manipulated within a target language program. 

Only defined attributes of a node or class may be ac- 
cessed. The type of the value of the attribute will be that 
specified by the structure definition. The defined attri- 
butes of a node (or class) are those associated directly 
with the node (or class) and attributes propagated from all 
classes having the node (or class) as a direct or indirect 
member. This restriction is similar to visibility rules in a 
statically scoped language. 
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Process ExampleProcess Is 
P r e  Input: Example; 
P o s t  Output: Example: 
T a r g e t  Language C; 
T a r g e t  Machine Vax; 

End 

Fig. 2 .  A Process declaration. 

A scalar or structured (set or sequence) typed attri- 
bute or variable may only be assigned a value of the same 
scalar or structured type. The only exception is that a 
value of type Integer may be assigned to an attribute or 
variable of type Rational. Arbitrary sharing of scalar or 
structured values should be supported. This restriction is 
present in most languages. 

An attribute or variable of a node type may only be 
assigned a reference to a node of the same node type. This 
restriction is also present in Oberon (381. 

An attribute or variable of a class type may only be 
assigned a reference to a node or class type which is a 
direct or indirect member of the class. 

The rules for assignment also hold for parameter 
passing during routine calls and returns. 

Operations such as append, isempty, etc. are sup- 
ported for attributes or variables having a set or sequence 
type, with full type checking on the set or sequence ele- 
ments. All operations for sets and sequences must pre- 
serve their semantics (i.e., sets do not contain duplicates, 
sequences are ordered). 

The restrictions placed on scalar and structure opera- 
tions are relatively easy to satisfy; supporting classes is 
more difficult. Two examples will illustrate some of the 
problems. If each node type is mapped into a distinct C 
type, then what should the C type of an attribute having 
an IDL class type be? The type rules state that nodes of 
various IDL node types, and hence C types, can be as- 
signed to this attribute, and nodes of other IDL node types 
cannot be assigned. How do we arrange for the C com- 
piler to allow some assignments but not others? The sec- 
ond example concerns compile-time versus runtime type 
checking. Occasionally type checking cannot be done 
completely at compile-time. How do we arrange for run- 
time type checking to occur only when dictated by the 
IDL type model? The next two sections show hon1 these 
and other issues may be addressed. 

111. THE TARGET DATA STRUCTURES 
We have recently completed an implementation of an 

IDL translator that supports C and Pascal as target lan- 
guages [29] and a set of IDL development support tools 
running on Unix (e.g.. an IDL graphical printer [ 3 0 ] ) .  
The translator fully implements IDL, has been in active 
use since Spring 1985, and has been used to generate por- 
tions of several compilers, including itself, as well as 
other tools. The use of the IDL translator with C is illus- 
trated in Fig. 3.  In this figure, files are shown as rectan- 
gles and invocations of programs are denoted with ovals. 

In our approach, the IDL translator generates two files 
for each process: one containing macro and data decla- 

cxccntAble ci> 
Fig. 3 .  Use of the IDL translator. 

rations, and a second containing code for the readers and 
writers declared in the process. In this paper, we focus 
entirely on the representation of instances of IDL struc- 
tures in the C language. While the design and implemen- 
tation of the readers and writers is certainly important 
[16], the topic is beyond the scope of this paper. This 
section describes the C representations chosen to imple- 
ment the various data types defined in IDL. After describ- 
ing our representation, we briefly discuss the representa- 
tions supported by ABC, the Ada-In-Ada compiler, the 
DRM, PLUM, and Graphite. Type checking is discussed 
in the next section. 

A .  Scalar Data Types 
IDL includes four scalar data types: Boolean, Integer, 

Rational, and String. A new C type named Boolean is 
provided to represent the IDL type Boolean. The C type 
Boolean is a typedef name for the C type char. The IDL 
data type Integer is mapped to the C type int. Represen- 
tation specifications can replace the default mapping: the 
allowable alternative representations are signed char, 
unsigned char, signed short, unsigned short, long, 
and unsigned long. These user specifications provide 
control over space-time tradeoff decisions. The IDL data 
type Rational is mapped to the C type float. Alterna- 
tively, an object of type Rational can be represented as a 
C double. 

Because C does not have a primitive string type, our 
interface provides a new C type named String to repre- 
sent the IDL data type String. All Strings are maintained 
in a global String table. This representation guarantees 
that pointer equivalence is an adequate test for String 
equality. Macros are provided for converting from a 
String to a C pointer referencing a null-terminated array 
of characters, and vice versa. The latter conversion re- 
quires a search of the global string table. Efficient search 
is accomplished using a hashing function. The advantages 
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are twofold. First, it saves both time and space as a result 
of reducing the number of dynamic memory allocation 
calls. Secondly, it greatly reduces the number of string 
comparison calls in a typical compiler since equality is 
based on pointer equivalance. Our representation of 
strings assumes that updating strings is less frequent than 
comparing strings. A simple analysis of the IDL translator 
and other compilers currently being implemented at UNC 
using IDL has shown that this assumption holds in this 
restricted domain. Invariant strings have also appeared in 
the Cedar 1171 and Gemstone [18] languages. 

Conceptually, all scalar type objects of the same value 
are shared in our representation, in that value equivalence 
has the same semantics as object equivalence. Sharing of 
the scalar types Integer, Boolean, Rational, and String 
in our representation is more correctly defined as physical 
sharing rather than logical sharing, as with nodes, for per- 
formance reasons. Whenever two scalar type variables are 
equal, their values reside in the same memory location. 
This reduces the cost of comparison and eliminates the 
need for copying. Permitting arbitrary sharing of these 
objects, where modification of one object would modify 
the value of other variables sharing a reference to that 
value, would have incurred excessive space overhead (up 
to 100 percent, for integers, which would have to be al- 
located elsewhere). Additionally, arbitrary sharing of sca- 
lars is not required very often in compilers and other pro- 
gramming environment tools. While Strings are 
implemented as references to arrays of characters, the 
representation ensures that references to equivalent strings 
will themselves be equivalent, as a performance optimi- 
zation. 

Representations for Boolean, Integer, and Rational 
in the ABC were int, int, and f loat respectively; no ad- 
ditional representations were provided. PLUM provides 
nine basic types, supporting Universal (an arbitrary 32- 
bit quantity), Univ-Ptr (a pointer to an arbitrary quan- 
tity), and Function-Ptr (a pointer to a function returning 
an integer) in addition to the C types listed above. Graph- 
ite supports all of the Ada predefined types, including 
Boolean, Integer, Float, and String, as well as private 
types. The treatment of IDL Strings in the ABC is similar 
to ours. In the other systems, strings are pointers to an 
array of characters; no global string table is used. 

B. Node Types 
Two different node types are supported: attributed nodes 

(those with direct or propagated attributes) and unattri- 
buted nodes. Attributed nodes are represented by pointers 
to C struct types. The members of the C struct corre- 
spond to the attributes of the IDL node. The attributes are 
stored differently depending on their type. The scalar types 
Boolean, Integer, and Rational are stored directly in the 
struct. The scalar type String is represented as a pointer 
to an array of characters referenced by a global string ta- 
ble. Node types are represented by node pointers in the 
struct or as enumerated types. Classes, whose represen- 
tation will be discussed shortly, are stored directly like 

the scalar types. Attributes with a set or sequence type are 
either stored inside the node or as a pointer depending on 
the Specified implementation. The struct includes a fixed 
header containing extra members generated for internal 
use by the runtime library routines. This information is 
stored in the first word of the struct and includes the type 
identifier (a unique even integer associated with each at- 
tributed node). 

Unattributed nodes can be mapped to one of two differ- 
ent C representations. The default representation is iden- 
tical to that for attributed noes. This representation allows 
several instances of an unattributed node to exist within 
an instance of an IDL structure and supports arbitrary 
sharing of these objects. A second representation for un- 
attributed nodes is as odd integer constants, indicated with 
the following syntax: 

For variable Use Representation Enumerated; 

Conceptually this means that only one copy of each such 
type will be present within an instance of an IDL struc- 
ture. The benefit, of course, is very fast “node” alloca- 
tion. 

When a node is created, either explicitly by the user or 
implicitly by the reader, all of its attributes are initialized 
to zero, corresponding to a false Boolean value, a zero 
valued Integer or Rational, an empty String, and an un- 
defined node or class reference. The user can specify that 
a user-defined macro or function be called immediately 
after creation and initialization; this macro will normally 
perform additional initialization [ 3  11. Local variables of 
type node or class must explicitly be assigned a node ref- 
erence by the user. 

Our approach for attribute storage is one of the options 
suggested in the DRM in that it utilizes the storage of 
attributes outside nodes (node references) and the storage 
of attributes inside nodes (scalar and enumerated types). 
In the ABC, nodes are implemented as C structs with 
attributes as members of the struct as in our implemen- 
tation. The structure also consists of a fixed header of 
three words containing node kind, a unique node identifier 
used by the readers and writers, and a counter for mark- 
ing. The main differences are that no attributes with a node 
type are stored inside the nodes (i.e., no enumerated 
types) and all nonscalar attributes are given an equivalent 
type, as described further in the next section. In the Ada- 
In-Ada compiler, nodes are represented as Ada variant 
records; the space overhead is unspecified. In PLUM, 
nodes are implemented similarly to the ABC, with an 
overhead of 2 words. PLUM restricts all attributes of the 
same name to have the same type. The representation of 
nodes in Graphite is not specified. 

C. Classes 
In our implementation, each IDL class is represented 

by a union of the node types that comprise the class. In- 
formation in a class is assigned and accessed through the 
class members except for common attributes of classes. 
An extra member exists in  the union which is a pointer to 
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a structure containing the common attributes of the class. 
Any of these attributes can be accessed through this field 
without knowing which node type is currently assigned to 
the class. This is possible because all of the attributes de- 
fined in a class are in the same position in every node 
belonging to that class. 

Nonhierarchical classes complicate matters somewhat. 
With these classes, a graph coloring algorithm similar to 
one suggested for Diana [ 11 is used to order the attributes 
with a minimum waste of space. The difference is that our 
algorithm considers the size and alignment of the attribute 
when determining the order while the previous algorithm 
assumed attributes were of uniform size and alignment. 

Two other representations for classes were also consid- 
ered. The first was a flat representation where all class 
information was lost once the data structures were gen- 
erated. This representation does not allow accessing at- 
tributes through classes, as class variables would not be 
supported. A second representation places pointers in 
nodes to their inherited attributes. This representation re- 
quires more space as well as an extra level of indirection 
to access attributes, without providing stronger type 
checking. Krogdahl has suggested yet another method: 
representing a reference of a class type with a pointer to 
within the struct representing the node [13]. Multiple in- 
heritance in C +  + is handled in the same manner [34]. 

In the ABC only one class is represented. A union con- 
taining a member for each node kind is defined. An at- 
tribute contained in a node structure is a pointer to this 
union. A generic structure is used to refer to any attribute 
of any node without regard to node kind or attribute name. 
Attributes are accessed using the appropriate offset. Their 
rationale for this representation was first that the sample 
package header in the DRM did this and second, that it 
made coding of the routines that used the ABC much sim- 
pler. In the next section, we discuss the disadvantages of 
this representation when considering issues of type safety. 

The Ada-In-Ada compiler used a modified Diana con- 
sisting of 2 1 nonoverlapping classes, each containing from 
one to 31 node types. Attributes common to most or all 
nodes within a class were placed in the fixed part of the 
variant record. 

PLUM and Graphite support a restricted version of 
classes, in that no attributes may be associated with 
classes. The representation is similar to ours: a union of 
the node types that comprise the class. Functions are pro- 
vided for storing or retrieving values of attributes in a 
class. 

D. Sets and Sequences 
The IDL translator generates a representation and op- 

eration routines for each attribute type which is a set or 
sequence. Set and sequence components can be node or 
class types as well as scalar types. The C interface pro- 
vides a default mapping for all component types. Alter- 
native representations can also be specified. Reference [ 3 ]  
is a related approach, supporting stacks, sets, arrays, and 
the predefined types vertex, arc, and graph. 

The representation for sets of Boolean is a C struct 
with two integer fields. true and false. The remesenta- 

tion for sets of Integer is a bit vector. The size of the 
vector is by default the number of bits in an int (generally 
32). Representation specifications for integer sets are used 
when a greater range is desired. The representation for 
sets of Rational, String and node or class types is by 
default a linked list of objects of the component type. All 
sequences are also represented in this manner by default. 
A linked list is made up of list cells containing two fields: 
the component object, and a pointer to the next cell in the 
list. Two types of array representations are also sup- 
ported. For all representations, macros which invoke ge- 
neric routines allow manipulation of sets and sequences 
without necessitating an understanding of the underlying 
implementation. For example, the following macros are 
generated for the type Seq Of A: inSEQA, initialize- 
SEQA, appendfrontSEQA, appendrearSEQA, 
OrderedinsertSEQA, retrievefirstSEQA, retrievelast- 
SEQA, ithinSEQA, tailSEQA, removefirstSEQA, 
rernoveSEQA, rernovelastSEQA, copySEQA, for- 
eachinSEQA, emptySEQA, equalSEQA, length- 
SEQA, and sort SEQA. Only one group of macros is 
generated for each set or sequence with a particular com- 
ponent type. This means that the representation must be 
consistent for all sets and sequences with the same com- 
ponent type. An advantage of generating just one group 
of macros is that the representation can be changed with- 
out changing the programmer code. This makes it easy to 
experiment with different representations when trying to 
determine the most efficient. A disadvantage is that the 
programmer may want different representations for differ- 
ent attributes which have the same set or sequence type. 
However, experience indicates that these attributes usu- 
ally have the same semantics and therefore, have similar 
operations performed on them. In such situations, there is 
no disadvantage to restricting them to the same represen- 
tation. 

The linked list representation is also used in the ABC 
and in PLUM. PLUM also supports sets implemented as 
bit vectors, but only for sets that may be represented in 
32 bits. In the ABC, PLUM, and Graphite, sequences are 
untyped. No information on set or sequence representa- 
tion was given for the Ada-In-Ada compiler. 

E. Private Types 
Private types are relatively easy to support, since the 

user must do most of the work, through user-supplied rou- 
tines that create instances of private types, and convert 
such instances to and from their external IDL types. The 
system interfaces with the user through the input and out- 
put mapping functions. Other routines may also be re- 
quired for initialization. finalization, marking, garbage 
collection, and move notification [31]. The graph color- 
ing algorithm uses the specified size in its calculation of 
attribute positions. 

PLUM supports a Universal, which is an arbitrary 32 
bit quantity that can be used in place of a private type. In 
this system, the internal and external representations are 
both integers. Graphite provides support for private types 
of any size. The other systems do not support private 
tvDes. 
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F. Processes 
Currently, each process is mapped into a separate C 

program. Each Pre port is associated with a function of 
the same name that reads in an IDL instance from a file 
and returns the root of that instance. Each Post port is 
associated with a procedure that takes the root of an IDL 
instance and writes it out to a file. The readers and writers 
may be called multiple times. The invariant structure 
specifies all the possible attributes each node and class 
may have, and is the union of all the port structures. 

For each process the IDL translator produces two files, 
an include file containing the data structure declarations 
and macro definitions, and the object code file containing 
the readers and writers of the process, to be linked in with 
the user’s code comprising the algorithm for the process. 

The ABC and PLUM do not support processes contain- 
ing multiple ports associated with potentially different 
structures. The Ada-In-Ada compiler and Graphite do 
provide such support for processes, but do not support an 
invariant structure; the instances are required to be sepa- 
rate in main memory. 

use the example from Section 11-A. Note that this is an 
incomplete example; many node types and attributes are 
omitted for the sake of brevity. This structure is illus- 
trated graphically below. 

statement booleanExpression 

forloop whileloop 

We will assume that the following variables have been 
declared: 

statement Astmt; 
function Afunction; 
forloop Aforloop; 
loop Aloop; 
assignment Anassignment; 
booieanExpression AbooleanExp; 

Note that variables of both node types and class types are IV. TYPE CHECKING 
The C language provides the structuring facilities of ar- 

rays, structs, pointers, and unions. The type model of 
IDL discussed in Section I1 is more flexible. In particular, 
attributes associated with classes can be accessed through 
the class, even though the node types may differ at run- 
time, and nodes of various node types can be assigned to 
variables of a class type. The challenge is to map IDL 
types into C types such that violations of the IDL type 
model by the programmer when using the C types result 
in violations of the C type model. At the same time, op- 
erations that are allowed in the IDL type model should be 
permitted by the C complier. Defining this kind of iso- 
morphism between the type models is particularly difficult 
because the type models are so different. 

This section describes the mapping from IDL types into 
C types. First, we give examples of using the macros pro- 
vided by the interface. We next discuss the expansion of 
the macros to show how the implementation is used for 
type checking. Macros are used rather than direct manip- 
ulation in C of the internal data structures to ensure uni- 
formity in the user interface and to hide some of the messy 
details. With macros, radical changes in the representa- 
tion, such as storing attributes outside of the nodes in a 
separate data structure, do not require any changes to the 
user code. The complete IDL specification used in the ex- 
amples in this paper, as well as the declarations and ma- 
cros produced by the IDL translator from this specifica- 
tion, are available from the authors. 

A .  Selector and Conversion Mcicros 
Static type checking is accomplished by the C compiler 

in conjunction with the data structures provided by the 
IDL translator. Dynamic type checking is accomplished 
by testing the instance of a class for validity. Macros pro- 

present. 
Attribute accessing is fairly straightforward and only 

requires static type checking. Functions are generated for 
valid attribute selections of nodes and classes. All of these 
functions are macros which require no procedure call 
overhead. The following are example expressions con- 
taining attribute selector functions which are legal to use. 

nameOffunction(Afunction) 
sposOfstatement (Astmt)  
sposOfforloop (Aforloop) 

The first is legal because the attribute name is associated 
directly with the node function. The second is legal be- 
cause the attribute spos is associated directly with the 
class statement. The third is legal because the attribute 
spos is propagated to the node forloop from the class 
statement. These macros free the programmer from 
worrying about whether a value is a node or a class. Fi- 
nally, the following is illegal 

nameofstatement (Astmt)  

because the attribute name is not guaranteed to be in in- 
stances of the class statement. In this case, the macro 
would not be generated by the IDL translator, so that the 
C compiler can give an error message if the user acci- 
dently attempts to access this attribute through state- 
ment. 

Assignments are more complex, because the types of 
both the left-hand side and the right-hand side must be 
taken into account. The C compiler does static type 
checking across assignment statements. For assignments 
of scalar and node types, this checking is sufficient. The 
following assignment statement, among many others, is 
allowed. 

vided by the interface facilitate both static and dynamic 
checking. For the macroexamples given below. we will 

sposOfstaternent (Astmt)  
= sposOffunction (Afunction); 



I340 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. I I .  NOVEMBER 1989 

For class types, however, more sophisticated checking is 
needed. When assigning a node to a class, the program- 
mer must convert the node to the class (termed widening). 
This conversion requires static type checking; nodes may 
only be widened to classes containing that node type. A 
conversion macro is provided for each valid conversion 
of nodes to classes. An example is 

typeof macro is guaranteed to correspond to the type of 
the actual node assigned to the class. 

We now discuss the declarations produced by the IDL 
translator, especially the unobvious ordering required for 
type safety of the attribute accessing operations. We next 
discuss the expansion of the macros used above and how 
the C compiler is used to flag type violations. 

Astmt = 
assignmentTostatement (Anassignment); 

When assigning a class to a node or to another class, the 
programmer must convert the initial class to the result 
node (termed narrowing) or result class (also considered 
narrowing if the result class is a subclass of the initial 
class). This conversion requires a runtime check to deter- 
mine if the class contains a valid instance. The appropri- 
ate macro does both the conversion and the runtime check. 
Legal examples include 

Afunction = statementTofunction (Astmt); 
Aloop = statementToloop (Astmt); 

In the first example, an error condition will occur if the 
value of the class variable Astmt is not a function node. 
In the second example, an error condition will occur if the 
value of the class variable Astmt is not a forloop or 
whileloop node. This is because these nodes are the only 
nodes that belong to both the statement and loop 
classes. Currently the runtime checking is implemented 
as an if statement; more efficient techniques are available, 
especially in portions of the class membership graph that 
are strictly trees [ 141. 

Finally, some assignments require both narrowing and 
widening. 

Astmt = assignmentTostatement (boolean 
ExpressionToassignment (AbooleanExp)) 

In this example, the boolean expression variable is nar- 
rowed to an assignment node which is then widened to 
a statement. 

For procedure calls, the conversion macros allow the 
expressions providing the values for the actuals to be con- 
verted to the appropriate type. The macros may also be 
used to convert the returned value to the appropriate type. 
The conversion in both cases is the responsibility of the 
caller. 

The provided conversion macros guarantee that only 
valid node types can be assigned to a class. Stylistic con- 
ventions dictate that these conversion macros can only be 
used on the right hand side of an assignment statement. 
The C compiler will guarantee this by issuing an error 
message if the conversion macro is used on the left hand 
side of an assignment statement. 

The programmer can determine which node is assigned 
to a class by using the provided macro typeof. This 
macro determines the node type given an instance of the 
class. Since the type information is contained inside the 
node structure, the type of the class returned by the 

B. Data Declarations 
As mentioned in Section III-B, attributed nodes are rep- 

resented by pointers to C struct types. The members of 
the C struct, prefixed with the letter “R”, correspond to 
the attributes of the IDL node. The C structure for the 
function node is: 

typedef struct Rfunction *function; 
struct Rfunction { IDLnodeHeader IDLhidden; 

sourceposition spos; 
String name; 
SEQf ormal-para met er parameters; 

1; 
The IDLhidden field contains extra members generated 

for internal use by the runtime library routines. This field 
is one word stored in the first word of every node structure 
that contains the type identifier and other information used 
internally by the runtime system. 

The second field, spos, is a propagated attribute from 
the ancestor class, statement. This attribute is in the 
same position in every node belonging to the class state- 
ment. The remainder of the fields are attributes declared 
for the node function. All of the attributes are accessed 
through indirection. For example, for the following var- 
iable declaration: 

function Afunction; 

the attribute name would be accessed using: 

Afunction- > name 

An IDL class is represented by a union of the node 
types that comprise the class. The members of the union 
are named by prefixing the node types with the letter “V”. 
The declaration for the statement class is: 

typedef union { 
int IDLinternal; 
Hstatement IDLclassCommon; 
assignment Vassignment; 
function Vf unction; 

forloop Vforloop; 
whileloop Vwhileloop; 

loop Vloop; 

} statement; 

The member IDLinternal is used to determine the type 
identifier of the node currently assigned to the class. If 
the value of IDLinternal is an odd integer, the class con- 
tains an enumerated type identified by this integer. If the 
value of IDLinternal is an even integer, the type of the 
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node is determined by examining the type field in the 
IDLclassCommon member of the union; 

However, as discussed previously, the macro 

#define nameOfstatement(Astatement) 
Asta tement -  > n a m e  #define typeof(c)  ( ( ! ( c l .  IDLinternal) 1 1 

is not generated because the attribute name is only in the 
class if it is assigned the node type funct ion.  Using an 
undefined macro is flagged by the C compiler in two ways. 

((c).lDLinternal&l I ?  
((c).lDLinternal) : (c) . lDLclassCommon-> 
IDLhidden.TypelD) 

It should be noted that this is not correct C code, in that 
the C language definition disallows examining the mem- 
ber of a union which is initialized to conatin a different 
member. In addition, the code assumes that a pointer re- 
quires as much space as an int, and that pointers are al- 
ways even. Despite these problems, the code compiles 
and executes correctly on many machines, including the 
Vax! Since the target machine is specified in the process 
declaration (the declaration given in Fig. 2 specifies Vax 
as the target machine), the IDL translator can generate 
code and macros that are known to work for that target 
machine. The same comment holds for attribute place- 
ment: the attribute ordering algorithm must consider the 
alignment requirements of the target architecture and 
compiler when positioning the attributes. 

The member, IDLclassCommon, is a pointer to a 
structure, prefixed with the letter "H", containing the 
common attributes of the class. This structure for the class 
s t a t e m e n t  is: 

s t ruc t  Hs ta tement  { 
IDLnodeHeader IDLhidden; 
sourceposition s p o s ;  

1; 
The IDLhidden field is identical to the field contained in 
the node structures. The s p o s  field is the class attribute 
propagated from s t a t e m e n t .  It is in the same position in 
every node belonging to that class. This allows the attri- 
bute s p o s  to be access through the IDLclassCommon 
field of s t a t e m e n t  without knowing which node type is 
currently be accessed through. 

C. Expansion of Mucros 
Accessing attributes is facilitated through the use of 

macros. An accessing macro is generated for each attri- 
bute of every node and class type. For example, the fol- 
lowing attribute accessing macros would be generated for 
the node function: 

#define sposOffunction(Afunction) Afunction 
- > s p o s  
#define nameOffunction(Afunction) Afunction 
- > n a m e  
#define parametersOffunction(Afunction) 
Afunction- > parameters  

The following macro would be generated for the class 
s ta tement :  

#define sposOfstatement(Astatement) 
Astatement.lDLclassCommon- > spos 

If the macro is used on the left-hand side of a C assign- 
ment, the C compiler will flag an illegal left-hand side and 
an illegal combination of pointer and integer. If the macro 
is used on the right-hand side, the C compiler will flag an 
illegal combination of pointer and integer. In addition, the 
loader will flag an undeclared procedure. 

2 5  
2 6  nameOfs ta tement (Astmt)  = New- 
String("illega1"); 
2 7  name = nameOfs ta tement (Astmt) ;  
28 

"main.c", line 2 6 :  illegal Ihs of ass ignment  op- 
erator 
"main.c", line 2 6 :  warning: illegal combination 
of pointer and  integer, o p  = 
"main.c", line 27: warning: illegal combination 
of pointer and  integer, o p  = 

Two types of conversion macros are generated: wid- 
ening and narrowing. Widening macros convert a node or 
subclass to an ancestor class. This conversion requires 
static type checking. Widening macros are generated for 
each direct or indirect ancestor of a node or class. For 
example, the node forloop would have the following 
widening macros generated for it: 

loop IDLtemploop; 
#define forloopToloop(Afor1oop) 

(1DLtemploop.Vforloop = Aforloop, IDLtemp- 
loop) 
s t a t e m e n t  IDLtempstatement; 
#define forloopTostatement(Afor1oop) 
(1DLtempstatement.Vforloop = Aforloop, 
I D Ltem ps t  a t  e m e n t  

Narrowing macros convert the initial class to the result 
node or or result subclass. This conversion requires a run- 
time check to determine if the class contains a valid in- 
stance. Narrowing macros are generated for each direct or 
indirect member of a class. For example, the s t a t e m e n t  
class would have the following narrowing macros gener- 
ated for it: 

#define statementToassignment(Astatement) 
( ( typeof(Asta tement )  = = Kassignment)  ? 
Astatement .Vassignment  : 
(ConversionError("statement", "assign- 
ment") ,  Astatement.Vassignment)) 

#define statementTofunction(Astatement) 
( ( t y p e o f ( A s t a t e m e n t ) =  = Kfunction) ? Astate-  
ment.Vfunction : 
(ConversionError("statement" ,"function"), 
Astatement .Vfunct ion))  
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#define statementToloop(Astatement) V. EVALUATION 
( ( ( typeof(Astatement)= =Kforloop) I 1 
( typeof(Astatement)= =Kwhileloop) I I O ) ?  
Astatement.Vloop: 
(ConversionError (“statement”,”loop”), 
Astatement.Vloop)) 

#define statementToforloop(Astatement) 
((typeof(Astatement)= =Kforloop) ? 
Astatement.Vforloop : 
(ConversionError(”statement”,”forloop”), 
Astatement.Vforloop)) 

#define statementTowhileloop (Astatement) 
((typeof(Astatement) = = Kwhileloop) ? 
Astatement.Vwhileloop : 
(ConversionError(”statement“,”whileloop”), 
Astatement .Vwhileloop)) 

Use of the provided macros guarantee that only valid 
node types can be assigned to a class. The C compiler will 
flag invalid conversions in a C assignment statement: 

41  
4 2  Aloop = booleanExpressionToloop 
(AbooleanExp); 
43 

”main.c”, line 42:  operands of  = have incom- 
patible types 

The compiler will issue an illegal left-hand side message 
if the conversion macros is used on the left-hand side of 
a C assignment statement. This enforces a stylistic con- 
vention. 

3 8  
39 statementToforloop(Astmt) = Afor- 
loop; 
40 

“main.c”, line 39: illegal Ihs of  assignment op- 
erator 

The set and sequence macros are also arranged so that 
the C compiler will perform the adequate type checks. 
The following is one such macro. 

formal-parameter IDLtempformal-parameter; 
#define appendfrontSEQformal-parameter (for- 
mal-parameterseq, formal-parametervalue) 

formal-parameterseq = (SEQformal-parame- 
ter) I DLListAddFront( 

( pG e n List for ma I-pa ramet erseq , 
((IDLtempformal-parameter = formal-pa- 
rametervalue), (*lin +*)(&IDLtempformal- 
parameter))) 

The first assignment statement will cause the type of the 
formal-parameterseq argument to be checked, and the 
second assignment (to the global variable IDLformal 
- parameter) will cause the type of the formal-pa- 
rametervalue to be checked. The last portion is complex 
in part because C unions cannot be coerced. 

In this section, we evaluate the mapping from IDL to 
C in terms of the goals set forth in the beginning of the 
paper: language coverage, type safety, runtime effi- 
ciency, compile-time efficiency, and the user interface. 
We also evaluate the ABC, the Ada-In-Ada compiler, the 
proposed Ada package specification in the DRM, and 
PLUM on these criteria. 

A.  Language Coverage 
Our system supports all of the constructs of IDL, in- 

cluding the basic types, nodes, nonhierarchical classes, 
sets and sequences of any cardinality, and private types 
of any size. The one aspect not supported is arbitrary 
sharing of scalar values; we argued in Section III-B that 
such sharing is very expensive in space and time and is 
usually not needed. As noted in previous sections, ABC 
does not support nonhierarchical classes, private types, or 
arbitrary sharing of scalars. The Ada-In-Ada compiler 
does not support nonhierarchical classes or private types, 
and may not support sets or sequences or arbitrary sharing 
of scalars. DRM appears to support all IDL constructs. 
PLUM does not support arbitarily-sized private types, at- 
tributes associated with classes, or arbitrary sharing of 
scalars. Graphite does not support attributes associated 
with classes. 

B. Type Safety 
Our system supports the IDL type model discussed in 

Section II-C. First, only defined attributes of a node or 
class may be accessed. These attributes are accessed using 
selector macros. Second, node variables and attributes of 
nodes may only be assigned values of the same type. The 
exceptions are that a value of type Integer may be as- 
signed to an attribute of type Rational (an implicit coer- 
cion allowed by the IDL type model) and that a value of 
type Integer may be assigned to an attribute of type 
Boolean, and vice versa. This latter coercion is included 
in the C language, and is carried over to the IDL interface 
because of its common usage. If strict type checking of 
booleans is desired, the following declaration can be sub- 
stituted for the one given in Section III-A. 

typedef struct { int value : 1 } Boolean; 
extern Boolean IDLtrue = { 1 } ;  
extern Boolean IDLfalse = { 0 } ;  

A class variable or attribute having a class type may 
only be assigned a reference to a node or class type which 
is a direct or indirect member of the class. The C compiler 
will flag all compile-time violations of these assignments 
if the attribute accessing and type conversion macros are 
used. The rules for assignment also hold for parameter 
passing. In such cases, lint [ 111 will catch all violations 
if the appropriate macros are used. Runtime checks for 
assignments are provided by the appropriate macro. The 
narrowing macros do runtime checks only when neces- 
sary; however, they do not take context dependent infor- 
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mation into account, such as in the following situation, 
where there is no need for runtime checks within the if 
statement 

if (typeof(A1 = = . . . I  . . . 

Also, the test is a sequence of binary comparisons, which 
could be made more efficient. Operations for attributes 
having a set or sequence type are implemented as macros 
which provide full type checking on the set or sequence 
elements. In addition, the translator only generates the 
operations which preserve the semantics of the set or se- 
quence type. Finally, type checking of private types is 
fully supported. 

This implementation has several advantages over the 
ABC in terms of type checking. In the ABC, a generic 
structure is used to refer to any attribute of any node with- 
out regard to node kind or attribute name. Attributes are 
accessed using the appropriate offset. In addition, all node 
or class attribute types are pointers to a union containing 
all the node types (a similar approach was employed man- 
ually in a Pascal application [ 101). There are two problems 
with the implementation in the ABC. First, it requires the 
programmer to consider implementation details when ac- 
cessing attributes. Second, it does not take advantage of 
type checking in the C compiler to flag invalid attribute 
selection and invalid assignments. Currently, the ABC 
only provides attribute selector functions for a few com- 
mon attributes. These are implemented as macros. These 
macros are said to be error-prone and hard to maintain 
because they rely on the order in which the attributes are 
declared [24]. In our implementation, the selection of at- 
tributes through classes also relies on the attribute order 
but since the declaration file is generated automatically by 
the translator, there is no maintenance problem. Finally, 
the ABC only allows sequences of (untyped) nodes and 
does not support private types. 

The Ada-In-Ada representation forces a tradeoff be- 
tween class attributes, which appear in the fixed portion 
of the node, and node attributes, which appear in the var- 
iant portion. If the IDL specification is a strict, shallow 
class hierarchy, this representation works well (the mod- 
ified Diana specification was a 2-level hierarchy). As pre- 
viously mentioned, it cannot support the multiple hierar- 
chies present in most IDL specifications nor does it 
support private types. 

While the proposed package specification in the DRM 
is strongly typed in the Ada sense, it does not support the 
IDL type model at all. No type checking of either nodes 
nor basic types is performed; all values are of a private 
type ‘‘tree”. Widening and narrowing are not supported, 
since classes in general are not supported. There is no 
type checking of sequences or sets or of private types. 

Type checking in PLUM is quite simple, for two rea- 
sons: classes are not associated with attributes and all at- 
tributes of the same name must have the same type. An 
attributes in a node appearing as a value of a class variable 
is accessed through a function which looks up that attri- 

bute in the node. Hence C does the initial type checking, 
and the search for the attribute currently residing in a class 
variable is checked at runtime. PLUM does not do any 
type checking on narrowing nor on sequences. Sets are 
restricted to sets of integers, so type checking is trivial in 
that particular case. Private types are only supported 
through the Universal data type. 

Graphite also does not allow attributes to be associated 
with classes. In all other cases, the target language Ada 
does the type checking, occasionally with some help from 
the user through explicit type specifications. 

C. Runtime Eflciency 

Our representation is resonably runtime efficient, both 
in space and time. Classes require no space overhead. The 
enumerated type representation for unattributed nodes re- 
quires space allocated only for an integer. The overhead 
for each node consists of one word. Attributed node ref- 
erences are simply pointers. Alternative representations 
for all the scalar types allow greater space efficiency. The 
representation is also reasonably time efficient in runtime 
time. Classes require no extra time at runtime. Runtime 
checking during attribute access or modification only oc- 
curs when required by the IDL type model; in particular, 
widening takes no time at runtime. Alternative represen- 
tations for sets and sequences allows certain operations to 
be made more efficient. 

In terms of space efficiency, the ABC differs from our 
approach in several aspects: enumerated types are not 
supported (hence, unattributed nodes still incur all the 
overhead of attributed nodes), the overhead per node is 
three times as great, sets and sequences must be repre- 
sented as linked lists, and alternative representations for 
scalars are not available. The original implementation of 
the Diana Package was even worse, since it did not sup- 
port variable length nodes. The ABC is quite efficient in 
time, since little is done at runtime. Widening and nar- 
rowing are not supported in the ABC. Enumerated nodes 
are also not present in the Ada-In-Ada compiler, which is 
otherwise quite efficient at runtime. 

As no package implementation is given in the DRM, it 
is difficult to estimate runtime efficiency. Widening and 
narrowing are not supported. 

PLUM is almost as space efficient as our approach. 
Since noninteger sets or sets of more than 32 integers are 
not allowed, most sets must be represented as linked list 
sequences. Attribute accessing and modification in classes 
is quite expensive, incurring the overhead of a function 
call and a hashed attribute search. As narrowing does not 
do any type checking, it is takes no time at runtime. 

No package implementation is given for Graphite, so it 
is difficult to evaluate its run-time efficiency. However, 
since every access or modification involves a procedure 
call (perhaps an inline one) as well as a case statement on 
the attribute, these operations will probably be quite a bit 
slower than direct access, unless the Ada compiler per- 
forms very sophisticated constant folding. 
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D. Compile-Time Eficiency 
The limitations in our implementation arise primarily 

in the areas of compile-time efficiency and the user inter- 
face. The current mapping results in a very large decla- 
ration file. Compiling source files with a large import en- 
vironment is a common implementation problem termed 
“big inhale” [6]. For each node type there are four ma- 
cros generated; allocation, initialization, deletion, and at- 
tribute deletion. For each Seq Of type there are eighteen 
sequence operation macros generated; for each Set Of 
type there are nine set operation macros generated. In ad- 
dition, there are macros for selecting attributes of nodes 
and classes and for converting between nodes and classes. 
These macros contribute to the length and long processing 
time of the declaration file. For example, the Diana spec- 
ification is 2585 lines long. The generated declarations 
file is 13,972 lines long, an expansion factor of over 5 .  
Such an expansion is common. 

The number of macros generated can be decreased with 
the Restrict clause of IDL notation (similar to the selec- 
tive import used for the systems programming language 
MARY [6]). The generated operations are then restricted 
to only those used by the programmer. In our experience, 
use of this feature decreases the size of the declarations 
file considerably. 

In the ABC and in PLUM, fewer macros are defined, 
because strong type checking is not supported (the ABC 
contains even fewer macros than PLUM). The preproces- 
sor is still used heavily, and restrictions are not sup- 
ported, resulting in lower compilation efficiency. The 
Graphite system is explicitly designed to reduce the need 
for recompilation when a specification changes. An an- 
cillary benefit is that the generated Ada package is small, 
reducing compilation time when the compiler must be in- 
voked. On the other hand, in Graphite, the Ada-In-Ada 
compiler, and the proposed package specification in the 
DRM, each attribute access invokes a (potentially inline) 
procedure, which requires a substantial amount of analy- 
sis at compile time or at runtime. 

E. The User Interface 

There are a few positive features of the user interface. 
First, automatically providing attribute selection func- 
tions, node and class conversion functions, and set and 
sequence operations frees the programmer from having to 
know the implementation details. Second, it is possible to 
change the representation of an attribute type without ne- 
cessitating changes to the programmer’s code. Finally, 
some of the conversion macros provide informative run- 
time error messages for invalid assignments of nodes and 
classes. 

A limitation in the user interface is the procedural syn- 
tax required for selecting attributes and members of 
classes. The additional syntax often results in very long 
expressions when accessing through several levels of in- 
direction. A second limitation is that the C compiler gen- 

erates confusing error messages when a type violation is 
detected. 

The other systems all provide a similar user interface, 
with analogous benefits and limitations. 

F. Summary 

In conclusion, the IDL translator and the C represen- 
tation have been successful. The type checking required 
by the IDL type model is fully supported, in contrast to 
the other implementations, which fell far short of this 
goal. The runtime efficiency is also higher than the other 
implementations. In fairness, the other implementations 
did not have strong type checking nor runtime efficiency 
as primary goals. However, we feel that an acceptable 
implementation of IDL must fully support the type model 
and exhibit adequate performance. 

The primary drawback to our implementation is the 
substantial compilation time incurred when using large 
structures such as Diana. A more powerful mechanism is 
needed to meet the compile-time efficiency and user in- 
terface goals we set for the mapping. 

VI. FUTURE WORK 

It is possible to meet the compile-time efficiency and 
user interface goals by using a special preprocessor rather 
than the standard C preprocessor as discussed above. We 
have designed a preprocessor that takes as input an IDL 
specification and a C program and generates a modified C 
program. The preprocessor is currently being imple- 
mented. The position of this preprocessor in the compile- 
load process is shown in Fig. 4, which should be com- 
pared to Fig. 3 in Section 11-A. The user C code would 
look like valid C code, except that some variables would 
have IDL types rather than C types. Widening would be 
denoted by function call syntax, narrowing by a switch 
statement, and attribute accessing, whether through a class 
or a node, would be denoted by the familiar “ - > ” con- 
struct. Set and sequence operations would be denoted by 
function call syntax, but with shorter names (e.g., ap- 
pendfront rather than appendfrontSEQformal- 
parameter) . 

The preprocessor performs all the type checking re- 
quired by the IDL type model. As a result, the represen- 
tation seen by the C compiler is at a much lower level. A 
node is implemented as an array of words. An attribute of 
a node is accessed by using the appropriate index into the 
array. A class is just a pointer to a word. The preprocessor 
determines if a valid node instance is being assigned to 
the class. The preprocessor provides both static and run- 
time checking. The static checking involves determining 
whether the attribute being accessed can exist in the class. 
The runtime checking involves generating code to deter- 
mine whether the attribute being accessed exists in the 
current instance of the node assigned to the class. 

There are several advantages to using such a prepro- 
cessor. First, it does not require the use of a declaration 
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file. This greatly reduces the processing time required to 
compile a source file using these definitions by eliminat- 
ing the big inhale. Second, the procedural interface for 
selection can be discarded. No macros need to be gener- 
ated for selections of attributes and class members. The 
preprocessor can determine if these operations are legal, 
inserting widenings automatically where necessary. Third, 
the preprocessor can provide better compile-time mes- 
sages than are currently provided by the C compiler. 
Fourth, no changes to the C compiler are needed. Finally, 
runtime checking for assigning an instance of a class to 
another class is facilitated by providing code for runtime 
checks and forcing certain programming conventions such 
as explicit narrowing (typestate tracking is an especially 
appropriate technique in this context (321). 

There are also disadvantages. First, the preprocessor 
has to do both syntactic and semantic analysis of C pro- 
grams. This is then redone by the C compiler. These tasks 
make the preprocessor complex and slow. A second dis- 
advantage is the effort required for the implementation of 
the preprocessor, necessary for each target language sup- 
ported. 

There are several other important areas still to be in- 
vestigated. One involves studying the interaction between 
the readers and writers of IDL instances and the represen- 
tation of the invariant in C .  This interaction presents new 
opportunities, such as memory partitioned by node type, 
and new problems, such as attributes in the invariant that 
are not present in the input structure. Another issue in- 
volves when the type checking is done: it can occur when 
the instance is read in, when an attribute is first accessed, 
or even when the instance is later written out. The per- 
formance ramifications of these alternatives are unknown. 

Finally, we are interested in applying these techniques 
to other target languages. Initial study indicates that the 
techniques discussed in the first part of the paper do not 
apply to strongly typed languages such as Pascal and 

Modula-2, but that a partial solution is possible with Ada 
and Modula-2+ (271. Languages, such as Oberon [38], 
that support type extension [39], appear to be compatible 
with these techniques. The preprocessor approach dis- 
cussed in this section looks more promising with Pascal 
and Ada. 

VII. CONCLUSION 
Our goal was to develop a mapping from IDL structures 

to C that is type safe, compile-time efficient, runtime ef- 
ficient both in space and time, and easy to use. Our so- 
lution is a translator which automatically produces C ma- 
cros and data declarations. Through the use of the C data 
structuring facilities and macros, our system met the goals 
of language coverage, type safety and runtime efficiency 
without any of the limitations imposed by the other im- 
plementations examined. The goals of compile-time effi- 
ciency and good user interface were only partially met. A 
new preprocessor, currently being implemented, appears 
to achieve all five goals. 
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