
Evaluating the Completeness of TSQL2Michael H. B�ohlenDepartment of Computer Science, University of ArizonaTucson, AZ 85721, USAChristian S. JensenDepartment of Mathematics and Computer Science, Aalborg UniversityFredrik Bajers Vej 7E, DK{9220 Aalborg �, DENMARKRichard T. SnodgrassDepartment of Computer Science, University of ArizonaTucson, AZ 85721, USAAbstractThe question of what is a well-designed temporal data model and querylanguage is a di�cult, but also an important one. The consensus temporalquery language TSQL2 attempts to take advantage of the accumulatedknowledge gained from designing and studying many of the earlier modelsand languages. In this sense, TSQL2 represents a constructive answer tothis question. Others have provided analytical answers by developingcriteria, formulated as completeness properties, for what is a good modeland language.This paper applies important existing completeness notions to TSQL2in order to evaluate the design of TSQL2. It is shown that TSQL2 satis�esonly a subset of these completeness notions.1 IntroductionThe temporal database community has been proli�c in its production of tem-poral data models and query languages. Over the past �fteen years, more thantwo dozen temporal relational data models have been proposed, each with oneor more associated query languages [24]. This has left the community with awide, confusing|but also challenging|variety of alternatives.As one response to this state of a�airs, a committee of eighteen temporaldatabase researchers has recently released the TSQL2 Language Speci�cation[25], which de�nes a temporal extension to the SQL{92 standard [22]. TSQL2was created partly in an attempt to consolidate, in a single consensual modeland language, the insights and experiences gained from the development of theprevious data models and languages.As a quite di�erent approach, other e�orts (e.g., [5, 6, 7, 21]) have put focuson the properties of temporal data models and query languages, as well as onthe design alternatives available when developing these. This has led to precisede�nitions of model and language properties that can be used to characterizeand evaluate the many models and languages. In the spirit of Codd's originalde�nition of relational completeness [11], some of these properties have beenstated as di�erent kinds of completeness.1

It then seems appropriate to use the body of work on model and languageproperties to study the design of TSQL2|this paper does exactly that. It is afundamental assumption of the paper that when evaluating a data model andquery language, both the functionality and the syntax for expressing a certainfunctionality are important. The completeness notions that we adopt in theinvestigation thus include both functionality-related and syntactic criteria.Speci�cally, we formalize the notion of a data model being upwards com-patible with another data model and show that TSQL2 is upwards compatiblewith SQL{92. Briey, this means that a smooth transition from SQL{92 toTSQL2 is possible.One of the most widely cited distinctions among temporal data modelsis that between �rst normal form and non-�rst normal form models. Thisdistinction has been formally captured by the concepts of temporally ungroupedand grouped data models [7]. We show that TSQL2 is temporally ungroupedand not temporally grouped. As this property is inherent in the model, we donot propose to change it. Rather, we put focus on the implications of a modelbeing ungrouped or grouped.The last two completeness notions considered in this paper are temporalsemi-completeness and temporal completeness [5]. The former notion essentiallystates that a temporal relational data model must contain temporal general-izations of all snapshot relations and queries. Further, temporally generalizedqueries must be syntactically similar to the snapshot queries they generalize.Temporal completeness adds further functional and syntactic requirements, ad-dressing query language aspects not covered by temporal semi-completeness. Itis shown that TSQL2 does not fully satisfy these completeness notions.Related work on completeness has been primarily in the context of non-temporal databases. It is possible to distinguish two basic approaches. The�rst one takes a particular calculus (usually �rst order relational calculus) asa metric. Any language having at least the expressive power of the calculus issaid to be complete. Original work along these lines was done by Codd for re-lational databases [11]. There have been generalizations for entity-relationshipdatabases [1] and for temporal databases [30]. One inherent problem with theseapproaches is the degree of appropriateness of the calculus that is used as ametric. There is no guarantee that the calculus captures all reasonable queries.For example, it has been shown [3] that �rst order relational calculus cannotexpress the transitive closure of binary relations.The second approach is to de�ne an appropriately large set of queries andrequire query languages to express all queries in this set. This kind of com-pleteness was investigated by Bancilhon [4] and Chandra and Harel [8]. Thede�nitions of temporal semi-completeness and temporal completeness are inthis spirit. They (in particular temporal semi-completeness) take the set ofqueries that are expressible by a non-temporal language as a reference and en-sure that temporal generalizations of the non-temporal language can expressall these queries. Additionally, they establish syntactic restrictions a temporallanguage must obey, which we believe is also important.The contributions of the paper are twofold. First, the paper further formal-izes some existing de�nitions of completeness of relevance for temporal datamodels and query languages, namely the notions of upwards compatibility,temporal semi-completeness and temporal completeness. Second, the paperexplores the design of TSQL2 by applying these completeness notions and the

notion of temporal (un)groupedness to TSQL2. It is shown that TSQL2 satis-�es some of these notions, but does not satisfy all of them.The paper is structured as follows. Each of Sections 2{5 �rst de�nes aparticular type of completeness. They then evaluate the completeness of TSQL2in the context of each completeness notion. During this investigation, somede�ciencies of TSQL2 are uncovered.1 Section 6 summarizes the paper andpoints to directions for future research.2 Upwards CompatibilityCompleteness is generally a relative property of a data model or a query lan-guage. Thus, a model or language satis�es some notion of \completeness" ifit is related to another model or query language in a certain way. In this sec-tion, we introduce the �rst of the three types of completeness. Speci�cally, weformalize the notion that a data model is upwards compatible with respect toanother data model. We subsequently consider the upwards compatibility ofTSQL2 with respect to SQL{92.2.1 De�nitionsWhen a new database management system, with an associated data model, isintroduced into an organization, often that system replaces an existing system,also with an associated data model. For software engineering reasons, to bediscussed in more detail below, it is an important property that the existingdata model be upwards (or, forwards) compatible with the new data model.Put di�erently, the new data model should be a strict superset of the existingdata model.We will adopt the convention that a data model consists of two components,namely a set of data structures and a language for querying the data structures.For example, the central data structure of the relational model is the relation,and the central, user-level query language is SQL. Notationally,M = (DS, QL)then denotes a data model, M, consisting of a data structure component, DS,and a query language component, QL. Thus, DS is the set of all databasesexpressible by M, and QL is the set of all queries in M that may be formulatedon some database in M. We will use db to denote a database and q to denote aquery.De�nition 2.1 (upwards compatibility) Let M2 = (DS2; QL2) and M1 =(DS1; QL1) be two data models. Model M2 is upwards compatible with modelM1 if and only if� DS2 � DS1, and� for each instance db in DS2 and for each query expression q in QL1, q isalso a legal query expression in QL2, and the results of evaluating q ondb is the same in M1 and M2.1To answer these de�ciencies, the design of Applied TSQL2 (ATSQL2) was initiated.ATSQL2 is a minimal extension of TSQL2 that is temporally complete. An extended versionof this paper (ftp://ftp.cs.arizona.edu/reports/1995/TR95-5.ps.gz) sketches syntax andsemantics of ATSQL2. A more comprehensive discussion as well as an implementation forpublic consumption are under way and should be completed by Fall 1995.

This concept captures the conditions that need to be satis�ed in order toallow a smooth transition from a current system, with data model M1, to anew system, with data model M2. The �rst condition implies that all existingdatabases in the old system are also legal databases in the new system and thusneed not be modi�ed when the new system is adopted. The second conditionguarantees that existing queries will remain legal and will compute the sameresults in the new system as in the old system. Thus, the bulk of legacyapplication code is not a�ected by the transition to a new system.The de�nition of upwards compatibility is related to the traditional notionof Codd completeness (Codd originally used the term relational completeness)[11], as formulated in the context of the standard relational model. To see thesimilarity and di�erences, we review that completeness notion.Essentially, a relational or extended relational data model is Codd com-plete if all queries that can be formulated on arbitrary conventional relationsexpressible in the model are a superset of all relational algebra queries that canbe formulated.De�nition 2.2 (Codd completeness) Let M = (DS;QL) be some datamodel, and let (SR;RA) be the relational model with the relational algebra asits query language. Model M is Codd complete if and only if DS contains SRand each query in RA has an equivalent counterpart in QL when all db in SRare considered.Two query expressions are equivalent if they always yield mutually identicalresults when supplied identical arguments. The relational algebra comes innumerous versions2, and while the de�nition is dependent on the particularversion chosen, the choice is not important in the remainder of this paper.The similarity between upwards compatibility and Codd completeness isapparent, but there are also important di�erences. First, Codd completeness isrestricted to use the relational algebra as a yardstick for measuring the expres-sive power of other query languages. Thus, the relevance of Codd completenessis dependent on how \natural" or well-chosen the relational algebra is. On theother hand, upwards compatibility is not tied to any particular data model.Second, Codd completeness strictly concerns functionality while upwardscompatibility concerns both functionality and the syntax for expressing thefunctionality. Speci�cally, Codd completeness is de�ned in terms of the exis-tence of equivalent, but possibly di�erent, query expressions. Upwards compat-ibility requires query expressions that yield identical results to also be syntac-tically identical. Thus, a model being upwards compatible with the relationalmodel/algebra is a stronger criterion than the model being Codd complete.2.2 Upwards Compatibility among SQL{92 and TSQL2Clearly, it is an important property for a new data model, such as TSQL2, tobe a strict superset of the data model it is intended to supersede, i.e., SQL{92.We now consider this issue.2The relational algebra used in conjunction with the original de�nition of Codd complete-ness [11] included \cartesian [sic] product," \union," \intersection," \di�erence," \projec-tion," \�-join," \division," and \restriction" (a special case of selection).

In TSQL2, there are six kinds of relations3: snapshot relation, valid-timeevent relation, valid-time state relation, transaction-time relation, bitemporalevent relation, and bitemporal state relation. The �rst is the kind of relationfound in the conventional relational model; the remaining �ve are temporalrelations. As all the schema speci�cation statements of SQL{92 are included inTSQL2, it follows that the data structures of TSQL2 include those in SQL{92.TSQL2 is also a strict superset of SQL{92 in its query facilities. In partic-ular, if an SQL{92 select statement does not incorporate any of the constructsadded in TSQL2 (e.g., the valid clause, the VALID() and TRANSACTION() ex-pressions, and extensions to the from and group by clauses), and mentionsonly snapshot relations in its from clause(s), then the language speci�cationstates explicitly that the semantics of this statement is identical to its SQL{92semantics.It should be noted that the preliminary TSQL2 language speci�cation re-leased in March, 1994 [25] did not have that property. In particular, SQL{92INTERVALs were termed SPANs in the preliminary TSQL2 speci�cation, andTSQL2 INTERVALs were not present at all in SQL{92. The �nal TSQL2 lan-guage speci�cation [25] retained SQL{92 INTERVALs and added the PERIOD datatype, which was previously called INTERVAL in preliminary TSQL2 (confusing,isn't it?). Additional changes to the datetime literals were also made to ensurethat TSQL2 was a strict superset of SQL{92.Hence, both conditions are satis�ed, demonstrating that TSQL2 is upwardscompatible with SQL{92.As discussed previously, this directly implies that TSQL2 is Codd complete.Finally note that, while upwards compatibility is a highly desirable property,it says absolutely nothing about constructs added to a data model or querylanguage to support time. This notion of completeness is thus quite limited inscope, as seen from a temporal data-model perspective.3 Temporal GroupednessIn this section, we �rst review the previously proposed notions of temporally un-grouped and grouped data models. We then investigate the temporal grouped-ness of TSQL2. In contrast to upwards compatibility, temporal groupednessspeaks directly to the support of time-varying information in the temporal datamodel.3.1 De�nitionIn temporal data modeling, an informal division among temporal relationaldata models into �rst normal form (1NF) and non-�rst normal form (NFNF)models has developed over the years, and each type of model has attracted itsfollowers4.3In this paper, we use the terminologyCodd introduced [10]: relation, tuple, and attribute,rather than the more prosaic terminology used in SQL{92 and subsequently in TSQL2: table,row, and column.4In this particular context, the NFNFness is due to how time is added to the relationalmodel, so most NFNF temporal data models do not support general NFNF relations, and thedistinction is di�erent from the distinction between the 1NF and the various general NFNFrelational data models (e.g., [17]).

With one objective being to clarify this distinction, Cli�ord et al. [7] haverecently given a formal de�nition of two types of relation structures, termedtemporally ungrouped and temporally grouped. While it is debatable whetherthe data model of TSQL2 is strictly a 1NF model in the generic sense5 , we willshow that the model is temporally ungrouped. To set the stage, we review thede�nition of a temporally ungrouped data model.A data model is temporally ungrouped if its data structure component isisomorphic to a particular canonical temporally ungrouped data structure, i.e.,an onto and 1{1 mapping must exist between the canonical structure and thestructure of the model to be proved temporally ungrouped. The canonicalstructure is de�ned next.De�nition 3.1 (canonical temporally ungrouped relation structure)[7, pp. 69{70] Let UD = fD1; D2; : : : ; Dndg be a set of non-empty value do-mains, and let D = [ndi=1Di be the set of all values. Let T = ft0; t1; : : : ; ti; : : :gbe a non-empty, �nite or countably in�nite set of times with \<" as the totalorder relation. Finally, let UA = fA1; A2; : : : ; Ang be a set of attributes, andlet TIME be a distinguished time attribute.A canonical temporally ungrouped (TU) relation schema is de�ned as atriple < A;K;DOM > where(1) A [fTIMEg (A � UA) is the set of attributes of the schema.(2) K [fTIMEg (K � A) is the key of the schema, i.e., K [fTIMEg ! A.(3) DOM is a function from A [fTIMEg to UD [fTg that assigns domainsin UD to attributes in A and TIME to T.A TU database schema is a �nite set of TU relation schemas. A TU tuple t onschema < A;K;DOM > is a function from A[fTIMEg to D[T that assignsa value in DOM(Ai) to each attribute Ai in A and a value in TIME to T. ATU relation is then a �nite set of TU tuples that satisfy the key constraint in(2) above. A TU database is a �nite set of TU relations.Example 3.2 The following is a sample TU database with one relation.A B TIMEa1 b1 1a3 b2 1a2 b1 2a3 b3 2The relation schema is the structure < fA;Bg; fA;Bg; f >, where f assignsdomains fa1; a2; a3g and fb1; b2; b3g to A and B, respectively, and the naturalnumbers to TIME.5First normal form (1NF) states that each attribute value is atomic [10]. This certainlyholds for TSQL2's explicit attributes, which can have as types any of the SQL{92 data typesor the new type PERIOD. Hence, considering only values of explicit attributes, TSQL2 is a 1NFmodel. However, the timestamp associated with each tuple in TSQL2 is a temporal element,a �nite union of periods [15]. While the timestamp is not an explicit attribute, it can bereferenced within a query. We thus feel that timestamps should also satisfy the property.Since the partitioning construct in the from clause of TSQL2 (designated \(PERIOD)") e�ec-tively iterates over the maximal periods of a temporal element, timestamps are not treatedas atomic. TSQL2 is not a 1NF model in this strict sense.

A data model cannot be both temporally ungrouped and temporally grouped(see below), and as we will prove that the TSQL2 data model is isomorphic toTU, we need not give a formal de�nition of the canonical temporally groupedrelation structure, TG. Rather, we give an example and point to what makesTG grouped.Example 3.3 The schema of a temporally grouped relation consists of thesame three components as that of an ungrouped relation, with the exceptionthat the component DOM assigns a domain of functions to each attribute inA. These functions map times to some value domain. A tuple, then, consistsof some speci�c function for each attribute in A. In addition, a tuple has anassociated lifespan, a set of times. The functions of a tuple map each time inthe tuple's lifespan to some value.For example, a TG relation schema may have attributes A and B. The keymay be the combination of these attributes, and DOM may assign functionsto A and B that map from the natural numbers to fa1; a2; a3g and fb1; b2; b3g,respectively. A sample tuple may have lifespan f1; 2g and may have the map-pings [1 ! a1; 2 ! a2] as its A-value and [1 ! b1; 2 ! b1] as its B-value. Arelation instance with this and one more tuple is given next.A B lifespan1! a1 1! b12! a2 2! b1 f1; 2g1! a3 1! b22! a3 2! b3 f1; 2gIn comparison with the TU instance given before, this instance adds a groupingof the temporal information. As before, there are four rows. However, theserows may now be combined in several ways to form tuples. Other legal TGinstances with the same rows as that TU instance are the following.A B lifespan1! a1 1! b1 f1g2! a2 2! b1 f2g1! a3 1! b2 f1g2! a3 2! b3 f2g A B lifespan1! a1 1! b1 f1g2! a2 2! b1 f2g1! a3 1! b22! a3 2! b3 f1; 2gPut informally, a TG structure contains more elements than a TU structure.This indicates why it is not possible for a relation structure to be both tempo-rally ungrouped and grouped.3.2 TSQL2 and Temporal Groupedness/UngroupednessThe canonical ungrouped relation structure TU is a quite simple one. Therelation structure of TSQL2 is more elaborate. TSQL2 relations come in sev-eral variations. First, relations may support valid time, transaction time, orboth. Second, valid-time support may be for either state or event relations.While each of the resulting six types of relations are important in practice, it isadvantageous in this context to consider only valid-time state relations. This

permits a focus on the important concepts and is consistent with existing work[7]6. With this restriction, the relation structures of TSQL2 and TU are quitesimilar.The central di�erence is that in TU, tuples are stamped with a single TIMEvalue from domain T while in TSQL2, tuples are stamped with sets of times,valid-time elements, from domain T. As we shall now demonstrate, this di�er-ence is not essential when groupedness is considered.To show that TSQL2 is temporally ungrouped, we devise an isomorphicmapping between TSQL2 and TU. This mapping takes as argument an arbi-trary TSQL2 relation with schema (A1; A2; : : : ; AnjjT) where the Ai are explicitvalue attributes and T is the implicit, set-valued time attribute (the verticaldouble-bar is used to emphasize that the Ai's are explicit attributes and thatT is a distinguished, implicit attribute). It maps each TSQL2 tuple in turn. ATSQL2 tuple(a1; a2; : : : ; anjjfti1; ti2; : : : ; tikg)is mapped to the setf(a1; a2; : : : ; anjjti1); (a1; a2; : : : ; anjjti2); : : : ; (a1; a2; : : : ; anjjtik)gof TU tuples. Note that one TU tuple is generated for each time in the time-stamp of the argument TSQL2 tuple. No duplicates are introduced as TSQL2timestamps are sets of times. Note also that no duplicate tuples are introducedbetween the sets of tuples generated from individual TSQL2 tuples. This isso because TSQL2 relations do not contain value-equivalent tuples [20] (tuplesare value-equivalent if they agree on all explicit attribute values [15]).It should be clear that this mapping is de�ned for all TSQL2 relations.Next, for any TU relation instance, there exists an TSQL2 instance that mapsto it, i.e., the mapping is onto the set of all TU relations. To see this, pickan arbitrary TU relation. For each set of value-equivalent tuples, form a singleTSQL2 tuple with the same explicit values and with a timestamp that is theunion of the timestamps of the value-equivalent tuples. The result is a legalTSQL2 relation, and that relation maps to the initial TU relation. Finally,there is exactly one TSQL2 relation that maps to any TU relation, i.e., themapping is 1{1. To see this, observe that two di�erent TSQL2 relations mapto di�erent TU relations. In conclusion, the mapping is an isomorphism.It is worth noting that TU and TSQL2 agree regarding duplicates. A TUrelation is de�ned as a set of tuples and thus excludes duplicates. TSQL2 rela-tions do not contain value-equivalent tuples, and a timestamp is a set of times.A version of TSQL2 changed to allow value-equivalent tuples with overlappingtimestamps would contain more instances than the original TSQL2 and wouldthus not be temporally ungrouped.It may also be shown that if fAj1 ; Aj2; : : : ; Ajlg is a temporal key [18] of aTSQL2 relation then fAj1 ; Aj2; : : : ; Ajl ;TIMEg is a key of the correspondingTU relation.We have now seen that TSQL2 is temporally ungrouped and thus not tem-porally grouped.6For simplicity, we also assume that the attribute domains of TU and TSQL2 are thesame and that all the domains, including the totally ordered time domain, are �nite.

4 Temporal Semi-CompletenessThis section �rst gives re�ned de�nitions of temporal semi-completeness andtemporal completeness [5]. The de�nitions presented here add additional syn-tactic requirements that were intended in the original de�nitions, but were notstated explicitly.These notions reect a belief that both functionality and syntactic require-ments are important when evaluating a data model. Both types of requirementsare relative to some chosen non-temporal data model. While the de�nitions areapplicable to any pair of a temporal and a non-temporal data model, they areintended to be applied to pairs of a temporal relational data model and theparticular version of the snapshot relational model that the temporal modelextends.The section ends with an evaluation of TSQL2 according to each de�nition,yielding new insights into this language.4.1 De�nitionTo de�ne temporal semi-completeness, we �rst introduce the auxiliary notionof a snapshot reducible query. We will use r and rv for denoting a snapshotand a valid-time relation instance, respectively. Similarly, db and dbv are setsof snapshot and valid-time relation instances, respectively.The de�nition uses a valid-timeslice operator �Mv;Mc (e.g., [15, 19, 27]) whichtakes as arguments a valid-time relation rv (in the data model Mv) and avalid-time instant c and returns a snapshot relation r (in the data model M)containing all tuples valid at time c. In other words, r consists of all tuplesof rv whose valid time includes the time instant c, but without the valid time.We assume that the valid timeslice preserves duplicates, i.e., if rv containsvalue-equivalent tuples that are valid at time c then �Mv;Mc (rv) will containduplicates. This becomes important later, when we consider SQL{92 relationswith duplicates.De�nition 4.1 (snapshot reducibility) [28] Let M = (DS;QL) be a snap-shot relational data model, and let Mv = (DSv ; QLv) be a valid-time datamodel. Also, let dbv be a database instance in DSv . A valid-time query qv inQLv is snapshot reducible with respect to a snapshot query q in QL if and onlyif 8dbv 8c (�Mv;Mc (qv(dbv)) = q(�Mv;Mc (dbv))).Graphically, snapshot reducibility implies that for all dbv and for all c, thecommutativity diagram shown in Figure 1 must hold.Temporal semi-completeness of a temporal data model with respect to asnapshot data model requires �rst that all relation instances in the snapshotdata model can be produced by taking timeslices of some relation instancein the temporal data model. Further, it is required that each query q in thesnapshot model has a counterpart qv in the temporal model that is snapshotreducible with respect to it. Observe that qv being snapshot reducible withrespect to q poses no syntactic restrictions on qv. It is thus possible for qv tobe quite di�erent from q, and qv might be very involved. This is undesirable,

? - ?-dbv�Mv;Mc (dbv) qv(dbv)q(�Mv;Mc (dbv)) = �Mv;Mc (qv(dbv))qvqtimeslices at c timeslice at cFigure 1: Snapshot Reducibility of Query qv With Respect To Query qas we would like the temporal model to be a straight-forward extension of thesnapshot model. Consequently, we add to the de�nition of temporal semi-completeness the restriction that qv and q be syntactically similar.De�nition 4.2 (temporal semi-completeness) [5] Let M = (DS;QL) bea snapshot data model, and let Mv = (DSv ; QLv) be a valid-time data model.Data model Mv is temporally semi-complete with respect to model M if andonly if all three of the following conditions hold.1. For every relation r in DS, there exists a valid-time relation rv in DSvand a time instant c such that r = �Mv;Mc (rv).2. For every query q in QL, there exists a query qv in QLv that is snapshotreducible with respect to q.3. There exist two (possibly empty) text strings S1 and S2 such that for allpairs (q; qv) of queries, where qv is snapshot reducible with respect to q,query qv is syntactically identical to S1qS2.Note that the same two strings S1 and S2 must apply to all (q; qv) pairs. Thestrings represent particular syntactic constructs in the language QLv.If the valid-time data model treats valid-time relations as a new type ofrelation, as does TSQL2, it may be possible to use the same syntactic constructs(i.e., qv and q are identical) for querying snapshot and valid-time relations.In this case, the type of a relation determines the meaning of the syntacticconstruct.Temporal semi-completeness of a valid-time data model with respect to asnapshot data model guarantees that the temporal model is a straightforwardextension of the snapshot model. Temporal semi-completeness is limited inthe sense that it covers only those queries in the temporal data model thatare snapshot reducible to a query in the snapshot data model. Most often, atemporal data model allows for the formulation of other queries as well.4.2 TSQL2 and Temporal Semi-Completeness withRespect to SQL{92This section identi�es where TSQL2 falls short in ful�lling the requirementsof temporal semi-completeness. The two related concepts of value-equivalent

tuples and duplicates will prove important in this section. The former conceptapplies only to temporal relations; the latter applies to both valid-time relationsand timeslices of valid-time relations.Example 4.3 Consider the four valid-time relations depicted in Figure 2. Re-lation r1 contains no duplicates and no value-equivalent tuples. Thus, notimeslices of r1 will contain duplicates. Relation r2 contains no duplicates,but does contain value-equivalent tuples. However, as the timestamps of thevalue-equivalent tuples are disjoint, no timeslices will contain duplicates. Re-lation r3, like r2, contains no duplicates (i.e., tuples in which the values for Aand T are identical), but does contain value-equivalent tuples. Unlike in r2, thetimestamps of the value-equivalent tuples are not disjoint and thus there aretimeslices of r3 (e.g., at time 17) that contain duplicates. Finally, relation r4contains duplicates and thus non-disjoint value-equivalent tuples, leading againto timeslices with duplicates.r1 r2 r3 r4A Ta1 [10�20)a2 [15�50) A Ta1 [10�17)a1 [17�20)a2 [15�50) A Ta1 [10�20)a1 [15�18)a2 [15�50) A Ta1 [10�20)a1 [10�20)a2 [15�50)Figure 2: Illustration of Value-equivalent Tuples and DuplicatesAllowing value-equivalent tuples does not necessarily yield duplicates intimeslices. However, if we want to have duplicates in timeslices, we must allow(non-disjoint) value-equivalent tuples.4.2.1 Lack of Duplicates in TSQL2One reason why TSQL2 is not temporally semi-completewith respect to SQL{92is that SQL{92 relations containing duplicates have no counterparts in TSQL2,where relations with value-equivalent tuples (and thus duplicates, either in atimeslice, or in the temporal relation itself) are not allowed. De�nition 4.2requires that for every SQL{92 relation r, there must exist a TSQL2 relationrv and a time instant c such that �TSQL2,SQL{92c (rv) = r. However, it is notpossible to �nd an rv in TSQL2 for r's in SQL{92 that contain duplicates. Anexample illustrates this.Example 4.4 Let salary relation, salary entry, be given that records (current)monthly incomes of persons. Assume that the person Tom has three incomesbecause he has three jobs. In two jobs, he makes 1200, and in one he makes800. This can be represented in SQL{92 as follows.salary entryName AmountTom 1200Tom 1200Tom 800

No timeslice of a TSQL2 relation can yield this relation. The following is areasonable attempt at adding valid time to the SQL{92 relation to obtain aTSQL2 relation. salary entryName Amount TTom 1200 [1994=5�1995=3)Tom 1200 [1994=8�1994=12)Tom 800 [1994=11�1995=6)This relation records that from May 1994 to March 1995, Tom was on onepayroll and made a monthly salary of 1200; from August 1994 to December1994 he was on another payroll where he also made 1200 per month; and fromNovember 1994 to June 1995 he made 800 in a third job. This is not a legalTSQL2 relation because it contains value-equivalent tuples.The merit of duplicates has already been discussed heatedly (see, e.g., [12,p. 109]). Doubtlessly, SQL{92 would be cleaner in a mathematical sense with-out duplicates. However, we cannot change SQL{92, so whether we like it ornot, it is necessary to deal with duplicates when designing a semi-completesuccessor to SQL{92. Speci�cally, for TSQL2 to satisfy the �rst two criteria oftemporal semi-completeness with respect to SQL{92, it must support relationscontaining value-equivalent tuples with non-disjoint timestamps, permittingduplicates in timeslices.As a reminder, we note that duplicates may signi�cantly impact the resultsof queries.Example 4.5 The following statement computes a relation that associateswith every person that person's total salary.SELECT Name, SUM(Amount)FROM salary_entryGROUP BY NameEvaluated over the initial nontemporal salary entry relation, the query com-putes Tom's salary to be $3200. Without duplicates, the result would havebeen $2000, which is unintended.4.2.2 Problems with SubqueriesTemporal semi-completeness requires that for every snapshot query, it is possi-ble to formulate a valid-time query that is snapshot reducible and syntacticallysimilar to it. TSQL2 tries to achieve this goal with a carefully designed defaultvalid clause. This works �ne for many simple queries, but it does not work forsubqueries.

Ignoring duplicates, the following two SQL{92-statements are equivalent[23, p.117].SELECT r5.aFROM r5,r6WHERE r5.a=r6.a SELECT r5.aFROM r5WHERE EXISTS (SELECT *FROM r6WHERE r5.a=r6.a)If TSQL2 is to be semi-complete with respect to SQL{92, there must be valid-time queries in TSQL2 that are snapshot reducible with respect to the twoqueries above and are similar to them. Indeed, the default valid clause ofTSQL2 was designed to make those two valid-time queries be identical to thetwo queries above. The valid-time queries are given below, with the implicitdefault valid clauses shown.SELECT r5.aVALID INTERSECT(VALID(r5),VALID(r6))FROM r5,r6WHERE r5.a=r6.a SELECT r5.aVALID VALID(r5)FROM r5WHERE EXISTS (SELECT *VALID VALID(r6)FROM r6WHERE r5.a=r6.a)The query to the left behaves as expected. The result (result1) of the query fortwo sample instances of r5 and r6 is shown in Figure 3. The valid clause statesthat the valid time of a result tuple is the intersection of the valid times ofthe argument tuples from r5 and r6. This means that the left-hand-side valid-time query is snapshot reducible with respect to the left-hand-side snapshotquery. The situation gets more complicated when we consider the query tor5 r6 result1 result2A Ta1 [5�9) A Ta1 [7�10) A Ta1 [7�9) A Ta1 [5�9)Figure 3: Computing a Valid-time Join Without or With a Subquerythe right. The outermost valid clause implies that the valid time of a resulttuples is equivalent to the valid time of the argument tuple from r5 (see result2in Figure 3 for an example). This means that the right-hand-side valid-timequery is not snapshot reducible with respect to the right-hand-side snapshotquery. TSQL2 thus lacks a valid-time query that is snapshot reducible withrespect to and is a simple syntactic extension of the right-hand-side snapshotquery. Consequently, TSQL2 is not temporally semi-complete with respect toSQL{92.4.2.3 SummaryWe have identi�ed two reasons why TSQL2 is not temporally semi-completewith respect to SQL{92. The �rst is that, while duplicates are allowed inSQL{92, value-equivalent tuples are not allowed in TSQL2. The second reason

is that the valid clause in TSQL2 is not su�ciently powerful to ensure that allSQL{92 queries have similar, snapshot reducible counterparts in TSQL2. Weshowed this for nested queries. We conjecture that there are also problems withaggregation, grouping, and ordering.5 Temporal CompletenessTemporal semi-completeness poses useful restrictions on temporal data models.However, temporal semi-completeness poses restrictions on only a subset of thequeries that are generally expressible in temporal data models. For example,it does not cover queries that retrieve information concerning relationshipsbetween perceived states of the world at di�erent points in time. Furthermore,temporal semi-completeness does not say anything about the format of validtime. Both aspects are accounted for by the notion of a temporally completedata model.5.1 De�nitionDe�nition 5.1 (temporal completeness) [5] A valid-time data modelMv =(DSv ; QLv) is temporally complete with respect to a snapshot data modelM =(DS;QL) if and only if all �ve of the following conditions hold.1. Mv is temporally semi-complete with respect to M .2. For every snapshot reducible query qv in QLv, it is possible to overridesnapshot reducibility, either by dropping the syntactic extensions thatenforce snapshot reducibility (c.f., De�nition 4.2) or by modifying qv syn-tactically to S1qS2, where S1 and S2 are (possibly empty) text stringsthat depend on QLv but not on qv. Overriding snapshot reducibilitymeans to evaluate a query without interpreting valid times.3. The name of a valid-time relation within a statement can be syntacticallysubstituted (perhaps with other syntactic modi�cations and additions,such as parentheses) with a query qv in QLv that de�nes the respectivevalid-time relation without changing the semantics of the statement. Thesyntactic modi�cations must depend on QLv only, not on qv.4. Allen's temporal relationships [2] can be used between (a) temporal at-tributes of stored valid-time relations (i.e., valid time attributes and ex-plicit temporal attributes), (b) implicitly computed valid times associatedwith temporally semi-complete (sub)queries, and (c) temporal constants.5. It is possible to retrieve and constrain (a) maximal continuous valid-timeperiods and (b) valid times as speci�ed by the user.First, we require that temporally complete languages are temporally semi-complete. This accounts for queries that can be answered by examining (se-quences of) snapshots. Overriding snapshot reducibility accounts for a funda-mental principle in databases, namely that a query should treat the elementsof a database as uninterpreted objects [8, p.158]. Section 5.2.1 provides an

example that illustrates this. The third condition ensures that the syntacticconstruct that is used to enforce snapshot reducibility can be applied not onlyto whole queries, but also to subqueries. In other words, a temporally completequery may consist of several temporally semi-complete queries. Allen's opera-tors are necessary to state arbitrary temporal relationships. (They were provento exhaustively describe the relationships between periods [2]. However, other,equally expressive operators are possible as well.) Note that there are varioussources of timestamps that are of interest in a temporal database: temporalattributes of base relations, implicitly computed valid times, and temporal con-stants. We require that all of them can be used together as operands to Allen'soperators. Finally the database system has to support maximal continuous pe-riods and valid times as speci�ed by the user. Both kinds of timestamps havebeen shown necessary in answering temporal queries [29]. It must be possible toretrieve and constrain (i.e., use as operands of functions and predicates) eitherkind of timestamp.We emphasize that the notions of temporal semi-completeness and temporalcompleteness go beyond approaches that de�ne the completeness in terms ofan algebra (i.e., by requiring a temporal language to have the same expressivepower as an algebra). For example, temporal semi-completeness (and thustemporal completeness) may, depending on the language it is with respect to,cover aggregates, grouping, null values, ordering, and duplicates.5.2 TSQL2 and Temporal Completeness with Respect toSQL{92In order to qualify for temporal completeness, a temporal query language mustful�ll the �ve requirements listed in De�nition 5.1. We �rst mustmodifyTSQL2to make it temporally semi-complete. To ensure temporal completeness, it mustin addition be possible to override snapshot reducibility. The valid clause inTSQL2 is intended for this purpose, but as its scope does not extend to setoperations such as EXCEPT and UNION, the clause cannot override snapshotreducibility for them, either.The third condition is that a temporal language must allow a valid-timequery to appear in a larger query everywhere a valid-time relation name mayappear, so that if the valid-time query computes the named relation, the twoforms of the larger queries compute the same result. This feature is providedby table expressions, which were introduced in SQL{92 [22, p.178] and carriedover to TSQL2.The fourth requirement is satis�ed by the where clause which is enhancedwith temporal predicates that have the same expressive power as Allen's pred-icates. Temporal attributes of base relations, implicitly computed valid times(e.g., valid times computed by table expressions), and temporal constants canbe used as operands to these predicates.Finally, a temporal language must support maximal continuous valid-timeperiods and valid times as speci�ed by the user. In the second subsection wewill see that TSQL2 ignores the user-speci�ed valid time format.

5.2.1 Overriding Snapshot ReducibilityIn TSQL2, the valid clause can be used to override snapshot reducibility|ifno valid clause is speci�ed, the semantics defaults to valid-time intersection.However, the scope of the valid clause does not include set operations and,therefore, it is not possible to override valid-time semantics associated withthese operations.Example 5.2 Suppose the valid-time relations r5 and r6 of Figure 3. InTSQL2, it is not possible to use EXCEPT to retrieve all tuples in r5 that arenot in r6. Snapshot reducibility is hard-wired into EXCEPT, which means thatTSQL2 always yields result3 rather than result4, shown below.result3 result4A Ta1 [5�7) A Ta1 [5�9)5.2.2 Beyond CoalescingThe last point of De�nition 5.1 requires that a temporal query language be ableto retrieve and constrain (a) maximal continuous valid-time periods and (b)valid times as speci�ed by the user. First, TSQL2 falls short in doing this at theoutermost level of queries. The results of queries are always coalesced relations,i.e., relations where value-equivalent tuples are eliminated by combining theirvalid timestamps. This also holds for an individual select statement which maybe part of a larger query. Hence, retaining valid times as speci�ed by the useris not possible in TSQL2.Second, TSQL2 relations are constrained to contain coalesced tuples, whichalso causes problems.Example 5.3 Consider relations r1 and r2 of Figure 2. We may envision thatit is signi�cant to a user whether the explicit attribute value a is associated withone single timestamp, [10�20), or is associated with two separate timestamps,[10�17) and [17�20). These two relations may mean di�erent things to a user.However, r2 is not a legal TSQL2 relation, and if the user inserts tuples ha1; [10�17)i and ha1; [17�20)i into a TSQL2 relation, the tuples will be coalesced, andrelation r1 will be the result. Put di�erently, TSQL2 does not consider thedi�erence between r1 and r2 (and r3 and r4) important and thus only admitscoalesced relations.Temporal completeness requires that TSQL2 respects the valid times asprovided by the user. If the user provides two intervals for attribute valuea, TSQL2 must maintain those two periods and cannot simply coalesce them.Clearly, this matters for queries. For example, the query \Does there exist anentry with a valid time identical to [10�17)" should return \yes" if applied tor2 (because the user has inserted a tuple with this valid time into r2) and \no"if applied to r1 (because the user has not inserted a tuple with this valid timeinto r1).

Currently, TSQL2 is a point-based [9], or a snapshot-equivalence preserving[19], temporal query language that uses time periods at the representationallevel to achieve a reasonable performance. Changing TSQL2 to respect thevalid times as speci�ed by the users represents a substantial conceptual changeto TSQL2. It may be argued that admitting uncoalesced relations represents acomplication, but it also adds to its expressiveness. With implicit coalescing,users do not have to be concerned with the valid times, but they also cannotassociate special semantics with valid times (c.f., Section 4.2.1).5.2.3 SummaryApart from not being temporally semi-complete, two aspects prevent TSQL2from being temporally complete. First, it is not possible to override the tem-poral semantics of set operations. Second, implicit coalescing prevents TSQL2from respecting valid times as provided by the users.6 Summary and Future ResearchThis paper has evaluated the consensus temporal query language TSQL2 usingexisting notions of completeness, some of which were further formalized in thepaper.In consistency with its design goals, TSQL2 was shown to be upwards com-patible with SQL{92 and thus to be relationally complete. TSQL2 was alsocharacterized as temporally ungrouped. This implies that TSQL2 is not tem-porally grouped. The evaluation of the temporal semi-completeness of TSQL2with respect to SQL{92 pointed to two important de�ciencies: not all SQL{92 relations can be produced taking timeslices of TSQL2 temporal relations,and not all SQL{92 queries have a similar temporal counterpart in TSQL2.Without these de�ciencies, TSQL2 would be a \cleaner" extension of SQL{92.The evaluation of temporal completeness of TSQL2 with respect to SQL{92pointed to two additional problems: with set operations in TSQL2 queries, it isnot possible to freely control the valid timestamps of result tuples, and TSQL2does not respect the valid timestamps of tuples as entered by the users (becausevalue-equivalent tuples are coalesced).As future research, it would be interesting to use additional completeness no-tions (e.g., temporally ungrouped complete in [7]) in the evaluation of TSQL2.In particular, it is a possible next step to compare the expressiveness of TSQL2to those of existing practical or theoretical temporal query languages. Also, acomparative study of completeness notions for temporal databases that shedslight on their interrelations and practical implications, and perhaps leads tonew completeness notions, would be worthwhile.

7 AcknowledgmentsThis work was conducted while the �rst author visited the University of Ari-zona. He was supported in part by the Swiss NSF. The second author wassupported in part by the Danish Natural Science Research Council throughgrants 11{1089{1, 11{0061{1, and 9400911. The third author was supportedin part by NSF grant IRI-9302244.We thank John Baer, Jan Chomicki, and Charles Kline for interesting dis-cussions and for their insights.References[1] P. Atzeni and P. P. Chen. Completeness of Query Languages for the Entity-Relationship Model. In Proceedings of the Second International Conferenceon Entity-Relationship Approach, P. P. Chen, editor, pages 111{123, Octo-ber 1981.[2] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communi-cations of the ACM, 16(11):832{843, 1983.[3] A. V. Aho and J. D. Ullman. Universality of data retrieval languages.In Proceedings of the 6th ACM Symposium on Principles of ProgrammingLanguages, pages 110{117, January 1979.[4] F. Bancilhon. On the Completeness of Query Languages for RelationalDatabases. In Proceedings of the 7th Symposium on Mathematical Founda-tions of Computer Science. Lecture Notes in Computer Science, SpringerVerlag, September 1978.[5] M. B�ohlen and R. Marti. On the Completeness of TemporalDatabase QueryLanguages. Proceedings of the First International Conference on TemporalLogic, pages 283{300, July 1994.[6] M. B�ohlen. The Temporal Deductive Database System ChronoLog.Ph.D. thesis, Departement Informatik, ETH Z�urich, 1994.[7] J. Cli�ord, A. Croker, and A. Tuzhilin. On Completeness of Historical Rela-tional Query Languages. ACM Transactions on Database Systems, 19(1):64{116, March 1994.[8] A. K. Chandra and D. Harel. Computable Queries for Relational DataBases. Journal of Computer and System Sciences, 21(2):156{178, October1980.[9] J. Chomicki. Temporal Query Languages: a Survey. Proceedings of the FirstInternational Conference on Temporal Logic, pages 506{534, July 1994.[10] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.Communications of the ACM, 13(6):377{387, June 1970.[11] E. F. Codd. Relational Completeness of Data Base Sublanguages. CourantComputer Symposia Series, 6:65{98, 1972.

[12] C. J. Date. Relational Database Writings 1991{1994. Addison-WesleyPublishing Company, 1995.[13] S. K. Gadia. A Homogeneous Relational Model and Query Languages forTemporal Databases. ACM Transactions on Database Systems, 13(4):418{448, December 1988.[14] S. K. Gadia and G. Bhargava. SQL-like Seamless Query of Temporal Data.In R. T. Snodgrass, editor, Proceedings of the International Workshop onan Infrastructure for Temporal Databases, Arlington, Texas, June 1993.[15] C. S. Jensen, J. Cli�ord, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajodia(eds.). A Glossary of Temporal Database Concepts. SIGMOD RECORD,23(1):52{64, March 1994.[16] C. S. Jensen (ed.). A Consensus Test Suite of Temporal Database Queries.Technical Report R 93-2034, Department of Mathematics and Computer,Institute for Electronic Systems, Fredrik Bajers Vej 7, DK 9220 Aalborg,Denmark, November 1993.[17] G. Jaeschke and H.-J. Schek. Remarks on the Algebra of Non First NormalForm Relations. In Proceedings of the ACM Symposium on Principles ofDatabase Systems, pages 124{138, March 1982.[18] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Extending Normal Formsto Temporal Relations. Technical Report TR 92-17, University of Arizona,July 1992.[19] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Modelsvia a Conceptual Model. Information Systems, 19(7):513{547, 1994.[20] C. S. Jensen, R. T. Snodgrass, and M. D. Soo. The TSQL2 Data Model.Chapter 10, The TSQL2 Temporal Query Language, R. T. Snodgrass (ed.),Kluwer Academic Pub., 1995, pp. 157{240.[21] L. E. McKenzie and R. T. Snodgrass. Evaluation of Relational AlgebrasIncorporating the Time Dimension in Databases. ACM Computing Surveys,23(4):501{543, 1991.[22] J. Melton and A. R. Simon. Understanding the New SQL: A CompleteGuide. Morgan Kaufmann Publishers, 1993.[23] P. O'Neil. Database: Principles, Programming, and Performance. MorganKaufmann, San Francisco, 1994.[24] G. �Ozsoyo�glu and R. T. Snodgrass. Temporal and Real-Time Databases:A Survey. IEEE Transactions on Knowledge and Data Engineering, 7(4),August 1995.[25] R. T. Snodgrass (ed.), I. Ahn, G. Ariav, D. Batory, J. Cli�ord, C. E. Dyre-son, R. Elmasri, F. Grandi, C. S. Jensen, W. K�afer, N. Kline, K. Kulkarni,T. Y. C. Leung, N. Lorentzos, J. F. Roddick, A. Segev, M. D. Soo, andS. M. Sripada. The TSQL2 Temporal Query Language. Kluwer AcademicPub., 1995, 674+xxiv pages.

[26] R. T. Snodgrass, I. Ahn, G. Ariav, P. Bayer, J. Cli�ord, C. Dyreson,F. Grandi, L. Hermosilla, C. S. Jensen, W. K�afer, N. Kline, T. Y. C. Leung,N. Lorentzos, Y. Mitsopoulos, J. F. Roddick, M. D. Soo, and S. M. Sripada.An Evaluation of TSQL2. TSQL2 Commentary, September 1994.[27] B. Schueler. Update reconsidered. In G. M. Nijssen (ed.), Architecture andModels in Data Base Management Systems. North Holland Publishing Co.,1977.[28] R. T. Snodgrass. The Temporal Query Language TQuel. ACM Transac-tions on Database Systems, 12(2):247{298, 1987.[29] S. M. Sripada. Temporal Reasoning in Deductive Databases. Ph.D. thesis,Imperial College of Science and Technology, University of London, 1991.[30] A. Tuzhilin and J. Cli�ord. A Temporal Relational Algebra as a Basisfor Temporal Relational Completeness. In Proceedings of the InternationalConference on Very Large Databases, D. McLeod, R. Sacks-Davis, and H.-J. Schek, editors, pages 13{23, August 1990.

