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Abstract—Information restriction controls access and ren-
ders records immutable; information accountability requires
data transparency to easily and efficiently determine when a
particular use is appropriate. Information accountability in
the context of relational databases is associated with time in
a surprising number of ways, as is summarized in this paper.
Notarization and validation of a database exploit the temporal
semantics of a transaction-time database. A corruption can be
associated with multiple times. Forensic analysis determines
the when: bounds on the corruption time, and the where: also
specified in terms of time. These bounds are depicted in a
two-dimensional corruption diagram, with both axes denoting
time. The various kinds of corruption events are defined
in terms of time. A parameter termed the regret interval
has significant security and performance implications. This
paper emphasizes the deep connections between time and the
definition, detection, forensic analysis, and characterized extent
of a database corruption within the context of information
accountability.
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The prevailing approach to achieving privacy and secu-
rity for databases is information restriction. For example,
ensuring record compliance, or information compliance in
general, usually entails rendering retained records immutable
and controlling access to them. We feel that the means
of addressing security and compliance should be viewed
as constituting a spectrum. If one asserts that information
restriction lies at one end of the spectrum then the question
which inevitably arises is what lies at the other end? In a
recent article Weitzner et al. [1] argue that access control
and cryptography are not capable of protecting information
privacy and that there is a true dearth of mechanisms for
effectively addressing information leaks. They propose that
as an alternative information accountability “must become
a primary means through which society addresses appro-
priate use” [1]. Information accountability assumes that
information should be transparent so as to easily determine
whether a particular use is appropriate under a given set of
rules. A related concept is continuous assurance technology,
defined as “technology-enabled auditing which produces
audit results simultaneously with, or a short period of time
after, the occurrence of relevant events” [2]. This concept
is crucial because it can be used to achieve a meaningful
operationalization of information accountability.
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Figure 1. The context of the present paper.

This paper studies the overlap of time, databases, and
security, as shown in Figure 1. We have encountered time
in this context in many different places and under many
different guises. This suggests a deep connection between
the general topics of (i) temporal databases and (ii) infor-
mation accountability. Our purpose here is to identify the
many instances where time appears in the definition and
implementation of information accountability and to discuss
new time-security interactions we have identified recently as
described in Sections VIII–X. More generally, we hope that
the many tantalizing glimpses of a fundamental connection
between temporal databases and information security, as
seen in this abbreviated trip through the stages of database
corruption, detection, and subsequent forensic analysis, will
encourage further work within this community to uncover
the source(s) of this connection.

I. THE AUDIT SYSTEM

In this section we describe how to audit a database and
summarize the tamper detection approach we previously
proposed and implemented [3]. We give the gist of our
approach, so that its temporal implications can be under-
stood. Table I lists the audit system execution phases, their
subphases, and the actions performed during each.

The Normal Processing execution phase differentiates
between the Total Chain Computation and the Tamper
Detection and Partial Chain Computation subphases. In
the first subphase transactions are hashed and cumulatively



Table I
AUDIT SYSTEM EXECUTION PHASES, SUBPHASES, AND ACTIONS.

Execution Phases Subphases Actions

– Hashing to create total chain
Total Chain Computation

– Notarization of total chain
– Re-hashing of total chain

Normal Processing Tamper Detection – Validation of total chain
and If required by forensic algorithm:

Partial Chain Computation – Hashing to create partial chains
– Notarization of partial chains

– Running a forensic algorithm
Corruption Region Analysis

to determine where and when
Forensic Analysis

Manual Analysis – Determining who and why

linked (by increasing transaction commit time) using a
cryptographically-strong hash function, and the resulting val-
ues are digitally notarized by an external digital notarization
service. In the latter subphase hash values are recomputed
and compared with those previously notarized. It is during
validation of the total chain that tampering is detected,
when the just-computed hash value doesn’t match the one
previously notarized.

The validator provides a vital piece of information, that
tampering has taken place, but doesn’t offer much else. Since
the hash value is the accumulation of every transaction ever
applied to the database, we don’t know when the tampering
occurred, or what portion of the monitored database was
corrupted. We have introduced a variety of database forensic
algorithms [4], [5], [6] to provide partial answers to these
questions. Note that certain forensic analysis algorithms
require the computation and notarization of one or more
partial hash chains during the scan of the entire database
that occurs during validation.

Details on performance, clarifications on the role of the
external digital notarization service, and all the forensic
analysis algorithms are beyond the scope of this paper and
can be found elsewhere [5], [6].

II. THREAT MODEL

Time is first encountered in the underlying threat model.
We assume a Trusted Computing Base (TCB) consisting of
correctly booted and functioning hardware and a correctly
installed operating system and DBMS. More precisely, we
assume that the TCB is correctly functioning, the DBMS
is created, maintained, and operates in a secure manner,
and all network communication is performed through secure
channels (such as SSL), ensuring the correctness of the
internal state of the DBMS.

A tampering by an adversary (“Bob”) occurs at time tc.
This tampering can take many forms. In general, we assume
that an intruder (or an insider) who gains physical access
to the DBMS server will have full freedom to corrupt any
database file.

III. TAMPERING

The very definition of tampering can be stated in terms
of time. Users and applications modify the database during

normal processing, and later query that data. So how can
tampering be differentiated from normal processing?

To achieve this we introduce transaction-time support to
the database. A transaction-time database records the history
of its content [7]. All past states are retained and can be
reconstituted from the information in the database. This is
ensured through the append-only property of a transaction-
time database: modifications only add information; no in-
formation is ever deleted. Thus the database itself can serve
as an audit log. It is this basic property that we exploit to
validate the table.

Fortunately, the SQL:2011 standard and many commercial
DBMSes now provide transaction-time support. Oracle 10g
added support for valid-time tables, transaction-time ta-
bles, bitemporal tables, sequenced primary keys, sequenced
uniqueness, sequenced referential integrity, and sequenced
selection and projection, in a manner quite similar to that
proposed in SQL/Temporal. Oracle 11g enhanced support
for valid-time queries [8]. Teradata recently announced sup-
port in Teradata Database 13.10 of most of these facilities
as well [9], as did IBM for DB2 10 [10].

A normal modification of a tuple can only be performed
on the most recent version (that with a stop time of “until
changed”). The modification changes the stop time to the
current time (for deletions or updates) and inserts a new
record with the current time as the start time (for insertions
or updates).

A modification is considered a tampering or corruption
if it (a) changes any tuple with a stop time other than
“until changed”, (b) inserts a tuple with a start time other
than the current time and a stop time other than “until
changed”, (c) modifies the explicit attributes of any tuple, or
(d) physically deletes any tuple. Note that the first two con-
ditions involve timestamps stored in the database; the second
condition explicitly mentions “current time.” Specifically,
any modification other than a temporal upward compatible
modification [11] is considered tampering. Section VII will
examine a more refined taxonomy of corruptions.

IV. TAMPER DETECTION

We now examine tamper detection in more detail. Suppose
that we have just detected a corruption event (or CE), which
is any event that corrupts the data and compromises the
database. Table II summarizes all the time-related concepts
used in this paper. Time instants are generally denoted by a
subscripted t, time intervals by a subscripted I or R. Factors
are integers. A temporal or a spatial bound occurs at a time
instant, as does an event.

There exists a one-to-one correspondence between a CE
and its corruption time (tc), which is the actual time instant
(in seconds) at which a CE has occurred. Figure 2 shows
that tc marks the transition from a legal database state to an
illegal one.



Table II
SUMMARY OF TIME-RELATED CONCEPTS.

Symbol Name Definition
CE Corruption event An event that compromises the database

The validation of the audit logVE Validation event
by the notarization service
The notarization of a documentNE Notarization event
(hash value) by the notarization service

tc Corruption time The time instant of a CE
tv Validation time The time instant of a VE
IV Validation interval The time between two successive VEs
tn Notarization time The time instant of a NE
IN Notarization interval The time between two successive NEs
V Validation factor The ratio IV /IN

The time instant that the corruption locustl Locus time
data (lc) was stored

Spatial detection Finest interval chosen to express theRs resolution spatial bounds uncertainty of a CE
N Notarization factor The ratio IN/Rs

Temporal detection Finest interval chosen to express theRt resolution temporal bounds uncertainty of a CE
tFVF Time of first validation failure Time instant at which the CE is first detected

Time of most recent The time instant of the last NE whosetRVS validation success revalidation yielded a true result
Lower bound of the temporal uncertaintyLTB Lower temporal bound
of the corruption region
Upper bound of the temporal uncertaintyUTB Upper temporal bound
of the corruption region
Lower bound of the spatial uncertaintyLSB Lower spatial bound
of the corruption region
Upper bound of the spatial uncertaintyUSB Upper spatial bound
of the corruption region

tb Backdating time The time a timestamp was backdated to
tp Postdating time The time a timestamp was postdated to

Imax tran Transaction max-duration Maximum duration of a transaction
Minimal time interval before an adversaryIR Regret interval
can reverse a change

I∗R Regret interval estimate Lower bound on the regret interval
IRP Retention interval Length of the retention period
ts Shred time The time a tuple is shredded

ILH Litigation hold interval A duration of time specified by a court of law
Interval between the time a transaction readsIqv Query verification interval
data and the time when tampering is detected

The following discussion relates to our approach to ef-
fecting information accountability in relational databases. A
CE is detected during a validation event (or VE ) of the
database by the notarization service. A validation can be
scheduled (that is, is periodic) or could be an ad hoc VE.
The time (instant) at which a VE occurs is termed the time
of validation event, and is denoted by tv . If validations are
periodic, the time interval between two successive validation
events is termed the validation interval, or IV .

The validator compares the hash value it computes over
the data with the hash value that was previously notarized.
Tampering is indicated by a validation failure, in which the
digital notarization service returns false for the particular
query of a hash value and a notarization time. What is
desired is a validation success, in which the notarization
service returns true, stating that everything is OK: the data
has not been tampered.

A notarization event (or NE) is the notarization of a
document (specifically, a hash value) by the notarization
service. As with validation, notarization can be scheduled
(is periodic) or can be ad hoc. Each NE has an associated
notarization time (tn), which is a time instant. If notariza-
tions are periodic, the time interval between two successive
notarization events is termed the notarization interval, or IN .

The validation interval should be equal to or longer than
the notarization interval, should be an integer multiple of
the notarization interval, and should also be aligned with it,
that is, validation should occur immediately after notariza-
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Figure 2. Tampering, Detection, and Forensic Analysis.

tion. This is because one can only validate what one has
previously notarized. Having non-aligned notarization and
validation intervals can only delay tamper detection. Thus
we speak of the validation factor V such that IV = V · IN .
As long as this constraint is respected, it is possible to
change V , or both IV and IN , as desired. This, however,
will affect the size of the corruption region as emphasized
in Section VI.

There are several variables associated with each corrup-
tion event. The first is the data that has been corrupted, which
we term the corruption locus data (lc).

Forensic analysis, as discussed in Section VI, involves
temporal detection : the determination of the corruption
time, tc. Forensic analysis also involves spatial detection,
the determination of “where,” that is, the location in the
database of the data altered in a CE. (Note that the use of
the adjective “spatial” does not refer to a spatial database,
but rather where in the database the corruption occurred.)

Interestingly, even the corruption locus is specified in
terms of time. Recall that each transaction is hashed. There-
fore, in the absence of other information, such as a previous
dump (copy) of the database, the best a forensic analysis
can do is to identify the particular transaction that stored
the data that was corrupted. Instead of trying to ascertain
the corruption locus data (lc), we will instead be concerned
with the locus time (tl), the time instant the data was
originally stored. The locus time specifically refers to the
time instant when the transaction storing the corruption locus
data commits. (Here we are referring to the specific version
of the data that was corrupted. This version might be the
original version inserted by the transaction, or a subsequent
version created through an update operation.)

A CE can have many lc’s (and hence, many tl’s) associ-
ated with it. Such a CE is termed multi-locus: an intruder
(hardware failure, etc.) might alter many tuples. A CE having
only one lc (such as due to an intruder hoping to remain
undetected by making a single, very particular change) is
termed a single-locus CE. Now we can formally define what
a corruption event is.

Definition 1. A corruption event is a two-tuple (Tl, tc).
The set Tl = {tl1, tl2, . . . , tln} is the set of all locus
times associated with a particular corruption event. Each
(tli, tc) ∈ T2, where T is a time domain.

We define Rs as the finest interval chosen to express the
uncertainty of the spatial bounds of a CE. Rs is called the
spatial detection resolution. This is chosen by the database
administrator (DBA). Similarly, the finest interval chosen by



the DBA to express the uncertainty of the temporal bounds
of a CE is the temporal detection resolution, or Rt.

Several others works have studied tamper detection in
databases. An example of a WORM-based, long-term high-
integrity retention technique for fine granularity business
records is the transaction log on WORM (TLOW) ap-
proach for supporting long-term immutability of relational
tuples [12]. TLOW stores the current database instance in or-
dinary storage and the transaction log on Write-Once-Read-
Many (WORM) storage, while dispensing with a compliance
log altogether. The audit process uses hash values represent-
ing the data rather than the data themselves. An audit is
successful if the hash from the old database snapshot plus
the hash of all the new tuples introduced in the transaction
log match the hash of the current database instance. Thus
within this tamper detection framework the same notions
of corruption event, auditing/validation interval, and time of
first validation failure can be defined. Another time-related
concept, the query verification interval, is specific to TLOW.

Guo, Jajodia, Li, and Liu formulated a fragile watermark-
ing scheme for database tamper detection [13], [14]. Their
scheme is based on a watermark that is invisible (watermark
does not distort data) and can be blindly verified (original
unmarked relation is not required for verification). During
verification, the extracted watermark indicates the locations
of alterations. This approach does not utilize a temporal
definition of tampering.

V. THE CORRUPTION DIAGRAM

To explain forensic analysis within the context of our
approach, we introduce the Corruption Diagram, which is a
graphical representation of CE(s) in terms of the temporal-
spatial dimensions of a database.

Figure 3 illustrates a simple corruption event. While this
figure may appear to be complex, the reader will find that it
succinctly captures all the important information regarding
what is stored in the database, what is notarized, and
what can be determined by the Monochromatic Forensic
Analysis Algorithm—the simplest of the algorithms we have
proposed—about the corruption event.

This corruption diagram shares some aspects with
commonly-encountered bitemporal diagrams [15]. In a
bitemporal diagram, the axes are transaction time and valid
time, with rectangular polygons indicating the bitemporal
extent of facts. As we will see, the corruption diagram
conveys very different information, while having the surface
similarity of being a two-dimensional depiction, with time as
both dimensions. First we give the definition of a corruption
diagram before describing it in detail.

Definition 2. Let T be a time domain. A corruption diagram
is a plot in T2 having its ordinate associated with wall-
clock time and its abscissa associated with a partition of
the database according to transaction time. This diagram
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Figure 3. Corruption diagram for a data-only single-locus retroactive
corruption event.

depicts corruption events and is annotated with hash chains
and relevant notarization and validation events. At the end
of forensic analysis, this diagram can be used to visualize
the regions (⊂ T2) where corruption has occurred.

Let us first consider the simplest case. During validation,
we have detected a corruption event. Though we don’t know
it (yet), assume that this corruption event is a single-locus
CE. Furthermore, assume that the CE just altered the data
of a tuple; no timestamps were changed.

The x-axis represents when the data are stored in the
database. The database was created at time 0, and is modified
by transactions whose commit time is monotonically increas-
ing along the x-axis. (In temporal database terminology [7],
the x-axis represents the transaction time of the data.) In the
corruption diagram, time moves inexorably to the right.

The x-axis is labeled “Where.” The database grows mono-
tonically as tuples are appended (recall that the database
is append-only). As previously explained, we designate
“where” a tuple or attribute is in the database by the time of
the transaction that inserted that tuple or attribute. We delimit
the days by marking each midnight, or, more accurately, the
time of the last transaction to commit before midnight.

A 45-degree line is shown and is termed the action
line, as all the action in the database occurs on this line.
The line terminates at the point labeled “FVF,” which is
the validation event at which we first became aware of
tampering. The time of first validation failure (or tFVF) is
the time at which the corruption is first detected. (Hence the
name: a corruption diagram always terminates at the VE that
detected the corruption event.) Note that tFVF is an instance
of a tv , in that tFVF is a specific instance of the time of a
validation event. Also note that in every corruption diagram,



tFVF coincides with the current time. For example, in Figure 3
the VE associated with tFVF occurs on the action line, at
its terminus, and turns out to be the fourth such validation
event, VE4.

The actual corruption event is shown as a point labeled
“CE,” which always resides above or on the action line, and
below the last VE. If we project this point onto the x-axis,
we learn “where” (in terms of the corruption locus time, tl)
the corruption event occurred.

The y-axis represents the temporal dimension (actual
time-line) of the database, labeled in time instants. Any point
on the action line thus indicates a transaction committing at
a particular transaction time (a coordinate on the x-axis)
that happened at a clock time (the same coordinate on the
y-axis). For this reason, the two times are totally correlated
and the action line is always a 45-degree line. Projecting
the CE onto the y-axis tells us when in clock time the
corruption occurred, that is, the corruption time, tc. We
label the y-axis with “When.” The diagram shows that the
corruption occurred on day 22 and corrupted an attribute of
a tuple stored by a transaction that committed on day 16.

Notarization event NE1 hashes the transactions occurring
during the first two days (here, the notarization interval,
IN , is two days), linking these hash values together using
linked hashing [3]. This is illustrated with the upward-right-
pointing arrow with the solid black arrowhead originating at
NE0 (since the linking starts with the hash value notarized
by NE0) and terminating at NE1. Each transaction at commit
time is hashed; here the “where” (transaction time) and
“when” (wall-clock time) are synchronized; hence, hashing
occurs on the diagonal. The hash value of the transaction
is linked to the previous transaction, generating a linked
sequence of transactions that is associated with a hash value
notarized at midnight of the second day in wall-clock time
and covering all the transactions up to the last one committed
before midnight (hence, NE1 resides on the action line). NE1

sends the resulting hash value to the notarization service.
Also along the action line are points denoted with “VE.”

These are validation events for which a validation occurred.
During VE1, which occurs at midnight on the sixth day (here,
the validation interval, IV , is six days), rehashes all the data
in the database in transaction commit order, denoted by the
long right-pointing arrow with a white arrowhead, producing
a linked hash value. In fact, the diagram shows that VE1,
VE2, and VE3 were successful (each scanning a successively
larger portion of the database, the portion that existed at
the time of validation). The diagram also shows that VE4,
immediately after NE12, failed, as it is marked as FVF; its
time tFVF is shown on both axes.

In summary, we now know that at each of the VEs up
to but not including FVF succeeded. When the validator
scanned the database as of that time (tv for that VE), the
hash value matched that notarized by the VE. Then, at the
last VE, the FVF, the hash value didn’t match. The corruption

event, CE, occurred before midnight of the 24th day, and
corrupted some data stored sometime during those twenty
four days.

VI. FORENSIC ANALYSIS

Once the corruption has been detected, a forensic analysis
algorithm, like the Monochromatic Algorithm, springs into
action. The task of this algorithm as shown in Figure 2, is to
ascertain, as accurately as possible, the corruption region:
the bounds on “where” and “when” of the corruption.

On validation failure we know that the corruption must lie
in the upper-left triangle, delimited by the When and action
axes, denoting that the corruption event occurred before tFVF

and altered data stored before tFVF.
The most recent VE before FVF is VE3 and it was suc-

cessful. This implies that the corruption event has occurred
in this time period. Thus tc is somewhere within the last IV ,
which always bounds the “when” of the CE.

To bound the “where,” the Monochromatic Algorithm can
validate prior portions of the database, at times that were
earlier notarized.

Revisiting and revalidating the cumulative hash chains at
past notarization events will yield a sequence of validation
results that start out to be true and then at some point
switch to false (TT. . .TF. . .FF). This single switch from true
to false is a consequence of the cumulative nature of the
total hash chain. We term the time of the last NE whose
revalidation yielded a true result (before the sequence of
false results starts) the time of most recent validation success
(tRVS). This tRVS helps bound the “where” of the CE because
the corrupted tuple belongs to a transaction which committed
between tRVS and the next time the database was notarized
(whose validation now evaluates to false). tRVS is marked on
the Where axis of the corruption diagram in Figure 3.

Definition 3. In light of the above observations, we define
the four bounds of a CE.

• the lower temporal bound: LTB := max(tFVF−IV , tRVS),
• the upper temporal bound: UTB := tFVF,
• the lower spatial bound: LSB := tRVS, and
• the upper spatial bound: USB := tRVS + IN .

These bounds define a corruption region, indicated in
Figure 3 as a narrow rectangle, within which the CE must
lie. This example shows that, when utilizing the Monochro-
matic Algorithm, the notarization interval, here IN = 2 days,
bounds the “where,” and the validation interval, here IV = 6
days, bounds the “when.” Hence for this algorithm, Rs = IN
and Rt = IV . (More precisely,

Rt = UTB− LTB = min(IV , tFVF − tRVS)

due to the fact that Rt can be smaller than IV for
late-breaking corruption events, such as that illustrated in
Figure 5.)
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Other forensic analysis algorithms we have proposed
make use of partial hash chains in addition to the total chain.
These partial chains are computed and notarized during the
re-hashing and validation of the total chain. The partial
chains hash only parts of the data in the database and in
certain cases are not cumulative. Their “placement,” i.e.,
the parts of the database they collectively cover, creates a
structure over the database that allows the forensic algorithm
to prune the search space efficiently and thus correctly locate
multiple CEs very quickly. It also allows the decoupling of
the spatial detection resolution (Rs) and IN . In fact, the
value of Rs can be set by the DBA to be much smaller that
the value of IN .

VII. CHARACTERIZATION OF CORRUPTION TYPES

The CE shown in Figure 3 is termed a retroactive cor-
ruption event: a CE with locus time tl appearing before the
next to last validation event. As we will see in this section,
this is but one of several corruption types, characterized by
various temporal relationships.

A. Data-Only Corruptions

Figure 5 illustrates an introactive corruption event: a CE
with a locus time tl appearing after the next to last validation
event. In this figure, the corruption event occurred on day 22,
as before, but altered data on day 22 (rather than day 16 as in
the diagram of Figure 3). NE10 is the most recent validation
success. Here the corruption region is a trapezoid rather than
a rectangle. This shape is implied by the definition of LTB.

Both retroactive and introactive corruptions are types of
data-only corruption events.

B. Timestamp Corruptions

Data-only corruption events do not change any timestamps
in the tuples. However, there are two other kinds of cor-
ruption events that arise from timestamp corruption. In a
backdating corruption event, a timestamp is changed to
indicate a previous time/date with respect to the original time
in the tuple. We term the time a timestamp was backdated
to the backdating time, or tb. It is always the case that
tb < tl. Similarly, a postdating corruption event changes
a timestamp to indicate a future time/date with respect to
the original commit time in the tuple, with the postdating
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Figure 5. Corruption diagram with introactive data-only CE and envelope.

time (tp) being the time a timestamp was postdated to. It
is always the case that tl < tp. Both types of timestamp
corruption are illustrated in Figure 4. Observe that timestamp
corruption produces two corruption regions since changing
a timestamp effectively changes the order in which the tuple
is hashed into the total chain.

Combined with the previously introduced distinction of
retroactive and introactive, these considerations induce six
specific corruption event types.{

Retroactive

Introactive

}
×


Data-only

Backdating

Postdating


For backdating corruption events, we ask that the forensic

analysis determine, to the extent possible, “when” (tc),
“where” (tl), and “to where” (tb). Similarly, for postdating
corruption events, we want to determine tc, tl, and tp. This is
quite challenging given the only information we have, which
is a single bit for each query on the notarization service.

We have proposed a taxonomy of many other corruption
types along with a forensic analysis protocol on how to
identify each type (vid. http://www.cs.arizona.edu/projects/
tau/dragoon/taxonomy protocol.pdf). Please note that the
monitored database need not support valid time for forensic
analysis to work but if it is a bitemporal database then more
complex corruptions involving valid-time timestamps can
arise, not yet considered in the taxonomy.

VIII. VERY RECENT CORRUPTIONS

Corruption events that occur very recently present a
challenge to forensic analysis. The problem arises from
the assertion that a CE cannot occur below the 45-degree
line. The argument is that it is impossible for tc < tl to
occur, because that would imply that the data are corrupted
before they are added to the database. This argument holds
generally, but there does exist an exception, where the CE
can be below the action axis: when the CE corrupts data of
a currently executing transaction. Since a single transaction
takes a finite non-zero amount of time, there is a window of
opportunity between when the transaction starts and when
it commits during which a corruption can occur. In such a
case we will have tc < tl and the CE will be below the
45-degree line.



Fortunately, the existence of such corruptions does not
invalidate any of our previous analysis. Only the “at-the-
time-current” transactions in the most recent validation in-
terval are susceptible to this threat. Hence, the first change
to be made is to draw a straight-line “envelope” parallel to
the 45-degree action axis, whose horizontal distance from
the action axis represents the maximum duration of any
single transaction, denoted by Imax tran. In this way the
corruption region is augmented with a narrow slice, as shown
in Figure 5, to account for this possibility.

This window of opportunity for each transaction varies
since it depends on the duration of the transactions and that
is the reason Imax tran was chosen as the width of the
“envelope.” The only case where this will affect the result
of the forensic analysis is when the CE is an introactive CE:
only then can it approach and move past the 45-degree line.
Thus, in such a case the upper bound on tl will be increased
by Imax tran.

Note also that this weakness has a tradeoff: an introactive
CE puts a tighter lower bound on tc, meaning it is easier to
find the actual time of corruption. Observe that in Figure 5
the LTB does not coincide with VE3 but is instead raised
from day 18 to day 21.

A different approach to solving the above problem is to
introduce the notion of a regret interval [16]. This is a
minimal time interval, IR, before any adversary can reverse
the change they have made. For example, in current legal
interpretations of email compliance according to Sarbanes-
Oxley [17], this time interval is zero. However, when moni-
toring bioscience lab results, we may be able to assume that
after a new record is added, a week will pass—given that
certain protocols require several days to complete—before
any adversary is likely to “regret” its existence.

The true size of the regret interval is intrinsic to the
semantics and social use of the application. Note that the
DBA has no control over it. Furthermore, the DBA may
not be able to determine its size with absolute certainty.
However, the DBA can estimate it with a (possibly) tight
lower bound. We call this the regret interval estimate and
denote it by I∗R. Observe that I∗R ≤ IR.

The existence of a nonzero regret interval estimate can
be leveraged to increase throughput. However, in order
not to compromise the correctness of tamper detection and
subsequent forensic analysis the DBA must ensure that
notarization of hash values happens at time intervals which
are smaller than the estimated regret interval. This forces all
tamperings to transpire after a notarization, something that
ensures tamper detection. Thus we have IN < I∗R ≤ IR.
Moreover, validation events have to occur after notarizations
(one cannot validate a hash value that has not already
been notarized). If we set the validation interval to be
smaller than the estimated regret interval then we have
IN ≤ IV < I∗R ≤ IR and this enforces the absence of
introactive corruption events.

IX. SHREDDING AND LITIGATION HOLDS

Transaction-time semantics allow us to keep the history
of the entire database. This in turn enables the constant
monitoring of the database state in order to detect any
deviation. Keeping the totality of data that were ever stored
in the database causes complications. First it has an adverse
effect on performance since all the data have to be rehashed
during validation. The ever-increasing cost of notarizing and
validating the data will at some point become prohibitive.
Moreover, companies are not wont to keep legacy data for
long periods of time since such a practice poses a privacy
and liability threat. In general, old data are periodically
deleted while newer data must be kept for a specific retention
period according to regulations and company policy.

Therefore, a sliding time frame, the length IRP of the re-
tention period, exists whereby records continuously become
old enough to fall outside that window as time progresses.
Such records are deemed safe for physical deletion (shred-
ding). Shredding itself occurs at time ts, at any time after
the record exits the time frame now− IRP . This is a serious
issue because shredding breaks transaction-time semantics
that requires that the monitored database is append-only.

To complicate the situation even further litigation holds
can be issued on the data for a duration of time, ILH , spec-
ified by courts of law. Such a hold overrides any retention
period regulations and so none of the data can be subject to
shredding until the hold is lifted. Thus it can be said that
litigation holds restore transaction-time semantics. Similar
concepts have been described extensively elsewhere [18].

X. ENTERPRISE CONSIDERATIONS

Companies typically have many databases, a number of
which are susceptible to tampering and thus fall under
the purview of database information accountability. It is
useful for the company’s Chief Security Officer (CSO) to
set general corporate policies on acceptable values for those
parameters in Table II. So for example the CSO could dictate
that the validation interval IV be no longer than 2 days and
that the spatial detection resolution Rs be no longer than
one hour, applicable to all databases being monitored. The
database administrator could then indicate, for a particular
database or perhaps even particular tables, the specific values
for the spatial detection resolution Rs and the regret interval
estimate I∗R. These values would subsequently dictate other
values, such as IN and IV . As the values are related in ways
summarized in previous sections, the CSO and the DBA both
have flexibility in what to specify.

Note that it is important to record these various enterprise-
wide and database-specific settings. These settings have a
profound influence on the quality of the forensic analysis,
and a cost model has been developed which incorporates
these settings, in order to assess the forensic cost associated
with each algorithm. The effect of the settings on the foren-
sic cost has been experimentally studied and verified [5].



Because of their importance, all settings are stored in a
separate enterprise security database, itself a transaction-
time database (with some bitemporal portions), located in
the trusted computing base. We need to know when each
setting was specified. Time again makes its presence known.

XI. SUMMARY AND FUTURE WORK

As demonstrated throughout this paper, time arises in
many guises: in the definition of tampering, the data that
is tampered, the kinds of corruptions that can occur, the
detection of tampering, the forensic analysis of tampering,
and the “when” and even the “where” of the tampering deter-
mined by that analysis. Table II lists a full two dozen of the
time instants and intervals involved throughout the definition
and mechanism of database information accountability.

It would be interesting to see how defining tampering
in terms of pattern recognition of complex events [19]
can affect detection. Our intuition tells us that it would
allow detection of tampering at a semantic level wherein
modifications to the database issued through the DBMS can
be identified as illegal.

In general, there is something truly fundamental going
on, of which we are now seeing just the surface structure.
Determining that deep structure is our challenge to this
community.
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