
18

APPENDIX

I ALGORITHMS

In this appendix we provide the major algorithms for checking

sequenced and non-sequenced constraints. This material elab-

orates on the summary of the τXMLLINT implementation

provided in the paper.

CheckSequencedConstraints(constraints,

temporal document):

foreach constraint in constraints do
temporal document ←

FilterTemporalDocument(
constraint, temporal document)

foreach t in ExtractT imePoints(
temporal document) do

slice ← ExtractSlice(t, temporal document)
if �V alidate(slice) then

return false

end if
end

end

return true

Algorithm 1: Checking Sequenced Constraints

Algorithm 1 first shrinks the input temporal document by

removing irrelevant nodes in the FilterTemporalDocument

routine, resulting in a small fraction of the original docu-

ment. The relevant nodes are determined by the constraints,

particularly the values of the selector and field ele-

ments. The nodes in the document that are not referenced

by these elements will not be kept in the filtered document.

It then iterates through the time points, which are the times

when changes occur in the document, computed by routine

ExtractT imePoints.

ExtractSlice(at time, node):

if IsV ersionNode(node) then

foreach child in node.getChildNodes() do
if child.begin time ≤ at time ∧

at time < child.end time then
return ExtractSlice(at time, child)

end

end

return nil
else
slice ← node

foreach child in node.getChildNodes() do
extract ← ExtractSlice(at time, child)

if extract �= nill then

slice.addChild(extract)

end if
end

return slice
end

Algorithm 2: Slicing

A recursive routine ExtractSlice, presented as Algo-

rithm 2, is then invoked to extract the corresponding slice. The

versions within a version node are assumed to be contiguous;

hence, only one child will ever be extracted. If nil is returned

from the root, then there is a problem with the timestamps

and τXMLLINT will return false.

After the slices are extracted, the routine V alidate is

invoked to verify the sequenced constraints. In our current

implementation, we utilize the DOM based validation facility

provided by Java.

The number of time periods (slices) and the size of each

slice dominate the overall complexity of checking sequenced

constraints. Since the ExtractSlice routine traverses the

entire document tree, its complexity in the worst case (when

at time is greater than all the begin times) is O(n), where n

is the number of nodes in the document. Assuming the number

of time points in the temporal document is m, the complexity

of Algorithm 1 is O(n ·m).

CheckNonSequencedConstraints(constraints,

temporal document):

foreach constraint in constraints do
evaluation windows ← GetEvaluationWindows(

constraint.evaluation window size,

constraint.slide size, temporal document)
foreach eval window in evaluation windows do

results ← ExtractNodes(
eval window,

constraint.identifier,

constraint.xpath,

temporal document)
if �V alidateSpecificConstraint(

constraint, results) then
return false

end

end

end

return true

Algorithm 3: Checking Non-Sequenced Constraints

ExtractNodes(evaluation window, identifier,

xpath query, temporal document):

result ← new map

candidate nodes ← XPath.Evaluate(
identifier, xpath query, temporal document)

candidate nodes ← FilterNodesbyEvalWindow(
evaluation window, candidate nodes)

foreach can node in candidate nodes do
result.add(can node.identifier, can node.value)

end

return result

Algorithm 4: Extracting Related Nodes for Non-Sequenced

Constraints

Algorithm 3 validates all the non-sequenced constraints.

For each constraint, its evaluation windows are first computed

based on (i) the period of the temporal document, (ii) the

evaluation window size (the length of each period in the

temporal document during which this constraint applies), and



19

(iii) the slide size (the distance between the begin times of

successive evaluation windows).

ExtractNodes extracts only the nodes from the tem-

poral documents that are relevant to a constraint, within

each evaluation window. We discuss this routine shortly.

V alidateSpecificConstraint is then utilized to examine

whether the extracted nodes violate the constraint. This rou-

tine, which checks all four types of non-sequenced constraints,

is straightforward. For a cardinality constraint, the routine

groups each distinct key and accumulates the count of occur-

rences of each key. Similarly, for a unique constraint, distinct

keys are grouped. But in this case, if a key’s count is more than

one, this constraint is considered to be violated. In checking

a referential constraint, the routine evaluates the XPath ex-

pression of the conventional constraint that is referenced by

the temporal constraint. The existence of the values of the

nodes that are being checked is examined against the values

returned from evaluating the conventional constraint. Finally,

in verifying a datatype constraint, each pair of consecutive

values specified by the constraint are examined to determine

whether the value transition rules are violated.

To provide the routine V alidateSpecificConstraint with

the proper input, routine ExtractNodes (Algorithm 4) evalu-

ates XPath expressions specified by the constraints and filters

the document to produce the items, each identified by an

identifier, to be validated by the non-sequenced constraints. As

mentioned above, this algorithm performs XPath evaluation

and document content filtering, returning a mapping from

identifiers to the values associated with each identifier. By

evaluating the XPath expressions from the constraints, a set

of candidate nodes is extracted from the temporal document.

These nodes are then processed to retain only the nodes in

the current evaluation window. For each candidate node, the

distinct identifiers are grouped and stored in the result variable.

The complexity of Algorithm 4 is determined by the number

of candidate nodes n in the document as well as the number

of time points m. The overall complexity is thus O(n · m).

The complexity of Algorithm 3 is determined primarily by

the number of evaluation windows l as well as the complexity

of Algorithm 4, and is thus O(l · n ·m).

This worst case behavior is consistent with the experi-

mental results given in Section 9.3. Concerning Figure 5,

for sequenced constraints, the number of nodes (n) and the

number of evaluation windows (l) are both fixed, with the

number of slices (m) varied on the x-axis, implying the

observed linear growth in total execution time. Concerning

Figure 6, for non-sequenced constraints, the number of nodes

and number of evaluation windows are still fixed, except

for cardinality constraints, which has a smaller window size,

resulting in an increasing number of evaluation windows as

the number of slices increases. Thus referential integrity and

identity constraints exhibit linear behavior, while cardinality

constraints exhibit quadratic behavior.

The implementation of τXMLLINT can be obtained

from http://cgi.cs.arizona.edu/apps/tauXSchema/.

APPENDIX

II CONSTRAINTS USED IN EVALUATION

During our evaluation, we used the following three non-

sequenced constraints. To produce fair execution time results,

when we evaluated one of the constraints, we deactivated the

other two in the annotations document.

<!-- Non-sequenced Identify Constraint: -->

<!-- Item IDs are unique for books and may

<!-- not ever be re-used. -->

<item target="item">

<nonSeqKey name="bookIDKey" dimension="validTime"

evaluationWindow="36500">

<selector xpath="." />

<field xpath="@id" />

</nonSeqKey>

</item>

<!-- Non-sequenced Referential Integrity: -->

<!-- A related item should refer to a valid

<!-- item (possibly not currently an item in print). -->

<item target="item">

<nonSeqKeyref name="relatedItemRI" refer="itemID">

<selector xpath="." />

<field xpath="related_items//related_item//item_id" />

</nonSeqKeyref>

<itemIdentifier name="item_id"

timeDimension="transactionTime">

<field path="@id"/>

</itemIdentifier>

</item>

<!-- Non-sequenced Cardinality: -->

<!-- In any calendar year, an item may have up

<!-- to 6 authors. -->

<item target="item">

<nonSeqCardinality name="bookAuthorsNSeq" maxOccurs="6"

dimension="validTime" evaluationWindow="365"

slideSize="365">

<selector xpath="." />

<field xpath="authors//author/@author_id" />

</nonSeqCardinality>

<itemIdentifier name="item_id"

timeDimension="transactionTime">

<field path="@id"/>

</itemIdentifier>

</item>

Additionally, we used the following four sequenced con-

straints. Again, to produce fair execution time results, when

evaluating one of the constraints, we deactivated the other

three in the schema.

<!-- Sequenced Cardinality: -->

<!-- An item must have between 1 and 4 authors. -->

<xs:element ref="author" minOccurs="1" maxOccurs="4"/>

<!-- Sequenced Identify Constraint: -->

<!-- Item ISBNs are unique. -->

<xs:unique name="ISBNUnique">

<xs:selector xpath=".//item/attributes"/>

<xs:field xpath="ISBN"/>

</xs:unique>

<!-- Sequenced Referential Integrity: -->

<!-- A related item should refer to a valid item -->

<xs:key name="itemID">

<xs:selector xpath=".//item"/>

<xs:field xpath="@id"/>

</xs:key>

<xs:keyref name="itemIDRef" refer="itemID">

<xs:selector xpath=".//item/related_items/related_item"/>

<xs:field xpath="item_id"/>

</xs:keyref>

<!-- Sequenced Datatype: -->

<!-- The number_of_pages must be of type short. -->

<xs:element name="number_of_pages" type="xs:short"/>


