
An Empirical Study of

Transaction Throughput Thrashing

Across Multiple Relational DBMSes

Young-Kyoon Suha,1,∗, Richard T. Snodgrassb, Sabah Currimc

aSuper-Computing R&D Center, KISTI, Daejeon, Republic of Korea, 34141
bDepartment of Computer Science, University of Arizona, Tucson, Arizona, 85721

cAlumni Association, University of Arizona, Tucson, Arizona, 85721

Abstract

Modern DBMSes are designed to support many transactions running simul-
taneously. DBMS thrashing is indicated by the existence of a sharp drop in
transaction throughput. Thrashing behavior in DBMSes is a serious concern
to database administrators (DBAs) as well as to DBMS implementers. From
an engineering perspective, therefore, it is of critical importance to under-
stand the causal factors of DBMS thrashing. However, understanding the
origin of thrashing in modern DBMSes is challenging, due to many factors
that may interact with each other.

This article aims to better understand the thrashing phenomenon across
multiple DBMSes. We identify some of the underlying causes of DBMS
thrashing. We then propose a novel structural causal model to explicate
the relationships between various factors contributing to DBMS thrashing.
Our model derives a number of specific hypotheses to be subsequently tested
across DBMSes, providing empirical support for this model as well as impor-
tant engineering implications for improvements in transaction processing.

Keywords: DBMS Thrashing, Transaction, Throughput, Factors,
Structural Causal Model, Empirical Study

∗Corresponding author
Email addresses: ayoungkyoon.suh@gmail.com (Young-Kyoon Suh),

brts@cs.arizona.edu (Richard T. Snodgrass), cscurrim@email.arizona.edu (Sabah
Currim)

1The author was at the University of Arizona when starting this research.

Preprint submitted to Information Systems December 27, 2016

1. Introduction

Database management systems (DBMSes) are a core component of cur-
rent information technology (IT) systems [1]. DBMSes have been widely
adopted to serve a variety of workloads such as on-line analytical processing
(OLAP) [2] and on-line transaction processing (OLTP) [3] applications. Over
the last five decades, achieving high performance in handling workloads
has been a primary goal in the database community. Accordingly, various
methodologies and techniques have been proposed to enhance the efficiency
of DBMSes and thereby, of database applications.

Many DBMS performance issues have been addressed and resolved over
the decades, but scalability is still regarded as a major concern [1, 4]. When a
scalability bottleneck is encountered in a DBMS, transaction throughput can
drop. In the worst case the DBMS may experience performance degradation
exhibited by thrashing [5], in which a drastic reduction in throughput occurs.

1.1. The DBMS Thrashing Problem

DBMS thrashing [6, 7, 8, 9] is a precipitous drop of transaction throughput
over increasing multiprogramming level (MPL), defined as the number of
active database connections. Interestingly, DBMS thrashing is observed in
modern high-performance DBMSes, as demonstrated in Figure 1.

We studied three proprietary DBMSes2 (denoted by X, Y , and Z) and
two open-source DBMSes (MySQL and PostgreSQL). Each DBMS was run
exclusively on a dedicated machine with the same hardware specification as
will be described in Table 2. One DBMS was run on Windows due to its
unavailability on Linux.

Note that the configurations differ across the DBMSes in Figure 1, specif-
ically, in the number of processors (numProcs) on each machine running
a DBMS, as our goal in these initial experiments are just to see whether
each DBMS can be induced to thrash. This variation may explain why
PostgreSQL’s (Figure 1(e)) performance appeared to be about 2x better than
that of MySQL (Figure 1(d)), primarily because of twice more processors.
It may also account for why DBMS Y ’s (Figure 1(b)) performance appeared
to dominate the others by up to about 10x, perhaps due to the most eight
processors. Moreover, that 10x more tuples were scanned compared to the

2As legal agreements do not allow us to report the performance evaluation results of
the commercial, their names are anonymized in Figure 1.

2

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 0 200 400 600 800 1000

T
ra

n
sa

ct
io

n
s

P
er

 S
ec

o
n
d
 (

T
P

S
)

Multiprogramming Level (MPL)

(a) DBMS X’s Thrashing (numProcs=1)

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 34000

 36000

 38000

 40000

 0 200 400 600 800 1000

T
ra

n
sa

ct
io

n
s

P
er

 S
ec

o
n
d
 (

T
P

S
)

Multiprogramming Level (MPL)

DBMS Y

(b) DBMS Y ’s Thrashing (numProcs=8)

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000

T
ra

n
sa

ct
io

n
s

P
er

 S
ec

o
n
d
 (

T
P

S
)

Multiprogramming Level (MPL)

DBMS Z

(c) DBMS Z’s Thrashing (numProcs=8,
10% more tuples scanned)

 4500

 5000

 5500

 6000

 6500

 7000

 0 200 400 600 800 1000

T
ra

n
sa

ct
io

n
s

P
er

 S
ec

o
n
d
 (

T
P

S
)

Multiprogramming Level (MPL)

MySQL

(d) MySQL’s Thrashing (numProcs=2)

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000

T
ra

n
sa

ct
io

n
s

P
er

 S
ec

o
n
d
 (

T
P

S
)

Multiprogramming Level (MPL)

PostgreSQL

(e) PostgreSQL’s Thrashing
(numProcs=4)

Figure 1: Observed DBMS Thrashing

3

others, may explicate why the performance of DBMS Z was poorer than
that of DBMS Y ’s given the same number of processors. That said, a focus
on these experiments was not to see “different performance” under different
configuration across the DBMSes. The real attention was on “something
else,” i.e., thrashing, to be discussed now.

In the figure the x-axis shows varying MPL from 100 to 1,000 in steps
of 100, and the y-axis represents the number of completed transactions, also
known as transactions per second (TPS)[10], that we observed for a run at
each MPL. The transactions in Figure 1 are all read-only, with the range of
selected rows overlapping between the transactions within the same MPL.
(We will describe how we generate transactions in greater detail in Section 5.)

As shown in Figure 1, we observed that thrashing occurred in all the
DBMSes. For DBMS X, thrashing started at an MPL of 900, marked with
a red circle. At that MPL, there is a sharp drop in throughput, indicating
that DBMS X entered the “thrashing phase.” The MPL of 900 is thus called
the “thrashing point (TP),” after which DBMS X experienced thrashing.

The figure shows that this thrashing phenomenon was also observed in the
other DBMSes, whose thrashing occurred at MPLs of 600, 400, 700, and 600
marked with a red circle. In particular, there were slight bumps at MPLs
of 900 and 800 (and 1000) after DBMS Y ’s and PostgreSQL’s thrashing
occurred. But such bumps were within the thrashing phases of those two
DBMSes: The thrashing phase persisted until the last MPL of 1,000.

The experiments actually demonstrate two things. One is that thrash-
ing occurs in modern relational DBMSes. Second is that this thrashing phe-
nomenon is observed across all the DBMSes studied.

Thrashing behavior in DBMSes is a serious concern to DBAs (database
administrators) engaged in developing OLTP or OLAP systems, as well as
DBMS implementers developing te chnologies related to concurrency con-
trol. In general, if thrashing occurs in a DBMS, many transactions may
be aborted, perhaps resulting in little progress in transaction throughput
over time. From an engineering perspective, it is of critical importance to
understand the factors of DBMS thrashing.

However, understanding the origin of thrashing in modern DBMSes is
challenging. The challenge stems from many factors that may correlate
with each other and contribute to thrashing. No structural causal model
has been proposed to articulate why and when DBMSes thrash. If such a
model existed, then DBAs and DBMS developers would better understand
the root causes of DBMS thrashing and perhaps could predict the occurrence

4

of thrashing when running their workloads on their DBMSes and could then
take directed corrective actions (similarly to how errors in database design
can be predicted [11] and then addressed).

1.2. Research Questions

In this article we address the following three research questions.

1. What factors impact the prevalence of DBMS thrashing?

2. How do the factors of DBMS thrashing relate?

3. How much variance is accounted for by each factor influencing DBMS
thrashing, as well as how much variance is explained by all the proposed
factors in concert?

The database community has not adequately addressed these three im-
portant questions regarding DBMS thrashing. To answer the questions, this
article takes a fundamentally different approach (to be described shortly)
than the analytical and simulation methods taken by a rich body of existing
literature [9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

The first question concerns what factors can contribute to DBMS thrashing.
Prior research indicates that various factors, grouped into different complex-
ity constructs (by relevance) such as i) resource complexity [7, 8, 23] defined
as system resources, ii) transaction complexity [6, 9, 12, 13, 24] as trans-
action characteristics, and iii) processing complexity as DBMS’s transaction
processing capability [9, 10, 12, 19], all impact DBMS thrashing, as well as
does iv) schema complexity defined as database schema, additionally consid-
ered in this article. Section 3.2 describes the complexity constructs and each
of these factors in further detail.

The second question about how all the factors relate is one of the key
contributions of this article. This question is addressed in Section 4. Prior
research looked at the impact of one factor in isolation; this is the first time,
that we are aware, that a structural causal model for DBMS thrashing has
been developed and tested. In this article, we show an initial model shown
in Figure 3 and then proceed with a refined model to be shown in Figure 6.

The last question concerns a quantitative approach to explaining DBMS
thrashing. To answer this question, we collect empirical data on actual
DBMSes. We conducted rigorous experiments by first operationalizing and
then setting (for independent variables) or measuring (for dependent) vari-
ables within the context of the experiments. The measured data can then

5

be used to test the relationships hypothesized from the model via a variety
of statistical tools including regression [25], correlation [25], path [26], and
causal mediation [27] analyses.

In the course of addressing these three questions, this article proposes a
novel structural causal model that can explicate the occurrence of thrash-
ing in DBMSes better. This model (a) helps the database community bet-
ter understand the phenomenon of thrashing, (b) provides DBMS imple-
menters and DBAs with engineering implications drawn from the model,
and (c) guides researchers to identify and investigate other as-yet-unknown
factors that may contribute to DBMS thrashing.

1.3. Contributions

This article presents the following contributions.

• Elaborates a methodological perspective that treats DBMSes as exper-
imental subjects and uses that perspective to study DBMS thrashing.

• Proposes a novel structural causal model to explicate the origins of
DBMS thrashing in transaction processing.

• Presents and tests a space of hypotheses that in concert through further
investigation can refine and support (or not) the proposed model or
suggest a better model.

• Extends a recent research infrastructure [28], to schedule and run
large-scale experiments over multiple relational DBMSes, providing
empirical data to evaluate the proposed structural causal model.

• Proposes a novel thrashing analysis protocol (TAP) that can be applied
to the collected data.

• Conducts rigorous statistical analyses on the data refined by TAP.

• Suggests engineering implications to DBMS developers and DBAs, for
further improving DBMSes’ transaction processing.

• Guides database researchers to examine other unknown factors, con-
tributing to DBMS thrashing, by proposing an initial tested model that
can be extended and refined.

6

1.4. Organization

The next section reviews existing related literature. Section 3 identi-
fies several factors from the literature. We then present an initial struc-
tural causal model based on the factors and their hypothesized correlations,
thereby providing a set of hypotheses to be empirically tested. Next, we de-
scribe how the factors, or variables, can be operationalized to observe their
influence on thrashing and then propose a novel thrashing measurement pro-
tocol. We conduct an exploratory evaluation of the initial model. Subse-
quently, we refine the initial model and perform confirmatory evaluation of
the refined causal model. The model in turn provides several implications
for treating workloads more efficiently. Lastly, we summarize our findings
and list some remaining opportunities to augment the explanatory power by
improving the amount of variance explained by the final model.

2. Related Work

There is a rich body of existing literature concerning load control and
thrashing in transaction processing systems. Much of this work was done
from the 1980’s until the early 2000’s [6, 9, 14, 15, 16, 17]. There have been
several more recent contributions [1, 7, 8, 23] as well.

In general, there are three ways to understand any observable phenomenon
(in this case, thrashing). The first way is to build and evaluate an analytical
model. Tay [17] proposed an analytical model and simulation to understand,
compare, and control the performance of concurrency-control algorithms. He
suggested from his analytical model that data contention thrashing was due
to blocking rather than to restarts, and that resource contention (competing
for a transaction to finish the computation) caused thrashing to occur earlier.
Möenkeberg also pointed out through his analytical model that too many ac-
tive transactions in the system could incur excessive lock requests [16].

Thomasian introduced a methodology based on queuing theory to evalu-
ate the performance of concurrency control methods in transaction processing
systems [29]. Through a series of analytical models [18, 19, 20], he found out
that the mean number of active transactions in the closed system increases
with the MPL, reaching a maximum point before thrashing occurs, due to a
snowball effect, which refers to the blocking of transactions causing further
blocking of transactions.

A benefit of the analytical modeling is the conciseness of the resulting
model. Once all the variables used in the model are fully understood, it is

7

easy to follow the entire flow of how the model is derived. At the end, we
can expect the well-summarized model in a clean mathematical form.

The second approach is simulation, used in many studies [9, 14, 15, 16,
17]. One advantage lies in its flexibility [29], as a user can try various
configurations in a tool. Simulation can also be used to understand complex
systems. Simulation tools for extended queuing network models described in
Lavenberg’s book [30], may relieve a hard burden of developing simulations.

Much of the existing work relies on simulation as well as analytical models.
A drawback of these analytical and simulation methodologies is that the ana-
lytic and simulation results may not hold true for actual DBMSes. It is hard
to generalize their results to real DBMSes. The analytical and simulation
methods can be limited in capturing complex behaviors among transactions
and resources (CPU, I/O, and memory) in a current DBMS [31].

Another limitation in prior work is that the recent architectural trend of
multi-core processors was not reflected. Some of the work just discussed was
carried out before multi-core processors existed.

The third way is to utilize an empirical approach [32, 33], measuring a real
system. Recent studies [1, 7, 8, 23] used an actual DBMS. They examined
transaction throughput bottlenecks that emerged on a DBMS running on a
multi-core system (open source DBMSes (MySQL [1, 8], PostgreSQL [23],
or their own DBMS (Shore-MT) [7]). These works aimed at improving
multi-core scalability in DBMSes. They identified major bottlenecks in scal-
ability and provided relevant engineering solutions for the DBMSes.

A drawback of this third approach is that each evaluation was conducted
on one (or in a few cases, two) open-source DBMS(es). Their conclusions only
apply directly to those DBMS(es). Their work could not definitively demon-
strate that their results could be generalized to other (non-open source)
DBMSes. As there are large differences between existing DBMSes, it is hard
to say that their analysis is generalizable to other DBMSes, and even apply-
ing the tailored solution to those DBMSes may not work. As demonstrated
in Figure 1, the thrashing phenomenon is observed across DBMSes. This im-
plies that it is of critical importance to study thrashing behavior by regarding
DBMSes as a general class of computational artifacts.

A recent study [34] attempts to expose and diagnose violations of atomic-
ity, consistency, isolation, and durability (ACID) [35]—properties that mod-
ern database systems typically guarantee, under power failure. In this study
the authors use a total of eight widely-used systems: three open-source
embedded NoSQL (often interpreted as Not only SQL) [36, 37] systems

8

(TokyoCabinet [38], LightningDB [39], and SQLite [40]), one commercial
key-value store, and one open-source (MariaDB [41]) and three proprietary
OLTP database servers. The approach is somewhat similar to that taken
here, in that both 1) concern transactions, 2) take an empirical method
using real systems, and 3) identify root causes of a phenomenon observed
in database systems. However, their work focuses on understanding the
causality of the ACID property violation in the presence of electrical outages,
while our work aims at understanding the causality of thrashing.

None of the existing work considers correlations among factors contribut-
ing to thrashing. All previous investigations emphasize only a single factor.
As more factors emerge, their interactions cannot be ignored in understanding
the causality of DBMS thrashing.

In short, while there have been a good number of analytical models and
simulations and empirical work to understand DBMS thrashing, the existing
work has not yet broadened to address the following concerns: 1) simulation
or analytical study of models rather than real DBMSes, 2) study restricted
to one (or at most two) specific DBMS rather than multiple DBMSes, and
3) little consideration of relationships of factors.

In contrast, we utilize a novel, different empirical methodology, termed er-
galics [42]: developing a structural causal model to better explain the DBMS
thrashing phenomenon. Our empirical study 1) identifies variables affecting
the thrashing phenomenon, 2) constructs a structural causal model based
on the variables and their hypothesized correlations, 3) operationalizes each
of the variables—determines how to measure each of the variables and then
designs experiments setting or observing the variables along with the vari-
able measurement decision, 4) collects data by running the designed experi-
ments across multiple DBMSes, and 5) tests the structural causal model via
statistical techniques applied to the data. The model easily visualizes the
relationships among identified factors of thrashing.

There are also some challenges using our empirical methodology. One is
how to design an experimental methodology across a variety of DBMSes. It
is not easy to state a consistent operationalization for a variable across very
different DBMSes. The second challenge is to conduct such large-scale exper-
iments over several DBMSes. Managing such experiments can be difficult.

9

Dependent VariableIndependent Variable

DBMS Thrashing

Mix of
Transactions

Single
Transaction

Direct Queued

Local Distributed

Flat
Transaction

Chained
Transaction

Nested
Transaction

Multi-level
Transaction

Figure 2: Taxonomy of DBMS Thrashing

3. Exploring Potential Thrashing Factors

There is a spectrum of granularities—depending on what is being mea-
sured and how it is measured—in building a structural causal model of DBMS
thrashing. Based on this spectrum, we identify the variables of the model
and collect the variables’ values for testing the model.

Figure 2 presents a taxonomy for measuring DBMS thrashing. We treat
DBMS thrashing as a “dependent” variable, in that it is observed, not manip-
ulated. The variable is captured by the “maximum MPL” after which thrash-
ing behavior emerges, called the thrashing point, discussed in Section 3.2.5.

There are several factors contributing to DBMS thrashing. These factors
are treated as “independent” variables, defined as potentially impacting on
thrashing behavior. We introduce the independent variables in this section.

We observe the dependent variable of DBMS thrashing by operationalizing—
intervening (or, setting the values of) or observing (or, measure the values
of)—the independent variables. In Section 5 we elaborate in detail how to
operationalize them. Note that variable operationalization indicates how to
set an independent variable and measure a dependent variable.

Transactions are used to observe DBMS thrashing. Transaction types can
be divided into single or mixed. Single transaction type concerns a read-only
or write-only transaction. A mixed transaction type involves both reads

10

and updates within the same transaction. Here we cover only the single
transaction type due to complexity of the mixed type.

In the context of Gray’s categorization [43], our interest lies in a flat
transaction that contains an arbitrary number of actions, that is, has the
ACID properties [35] at the same level. A nested transaction is a tree of
transactions, the sub-trees of which are either nested or flat transactions. A
multi-level transaction is a special type of nested transaction that can commit
ahead the results of the sub-transactions before the surrounding upper-level
transaction commits. A chained transaction is the one that at commit passes
its processing context to the next transaction and then implicitly starts the
next transaction in one atomic operation. These other types of transactions
are not covered due to complexity.

We focus on direct transactions where the terminal interacts directly with
the server; in this study we do not cover queued transactions that are delivered
to the server through a transactional queue interacting with clients. Lastly,
we cover local transactions with no remote access. Distributed transactions
are not covered in this study because of their complexity.

Before identifying the factors of thrashing, we define several terms related
to transactions in the subsequent section.

3.1. Terminology

A transaction is represented by a single SQL statement, either a select
or an update. A client is specified by a Connection instance created by a
JDBC driver [44] configured for connecting to a DBMS subject, and it is im-
plemented within a Java thread. Provided that the Connection instance has
been already created, for the client to run its transaction, execute its com-
mit, and finish its run, we 1) create a Statement object from the Connection
object, then 2) invoke Statement.execute() from the Statement object by
passing to that method an SQL statement representing the transaction (to
be presented in Section 3.2.2), 3) call commit() to execute the commit of
that transaction, 4) keep running the same transaction until a specified con-
nection time limit (CTL), indicating how long a connection persists in the
DBMS, is reached, and lastly 5) terminate the client’s connection to that
DBMS experiment subject.

A batch is a group of clients, each executing its own transaction. The size
of a certain batch is equal to an MPL number. For the batch to run its clients’
transactions, we create as many Connection objects as the size of the batch
and then run each client’s transaction in the batch via the aforementioned

11

Statement.execute() in parallel. A batchset, called a “trial,” is a group of
batches whose size increases by steps of a certain number. The concept of
a batchset is introduced to determine the specific thrashing point (TP). (A
full view of a batchset is later given in Figure 4.)

3.2. Relevant Variables

Drawing from the existing literature [6, 7, 8, 9, 10, 12, 13, 19, 23, 24] and
our understanding, we have included several independent variables (i.e., the
number of logical processors, transaction size, and referenced row subset re-
gion) to be covered in detail shortly and one dependent variable (i.e., average
transaction processing time) that can influence DBMS thrashing, in the ini-
tial causal model to be shown later in Figure 3. These variables are grouped
into four constructs in the model, which are described in the following.

3.2.1. The Resource Complexity Construct

Resource complexity is a construct related to system resources that a
DBMS utilizes. This construct includes one variable: “number of processors”
(numProcs).

The Number of Processors. This is an independent variable capturing the
number of logical processors (hereafter, processors) available to DBMSes.
This variable addresses level of parallelism from which the DBMSes can ben-
efit from when executing their transactions. As pointed out in Section 2, re-
cent studies [7, 8, 23] have paid much attention to the influence of concurrency
by multi-core processors on thrashing. If we can utilize more cores, we can
benefit from increased parallelism in processing. Enhanced parallelism may
speed up transaction processing in DBMSes, which can service more trans-
actions that are concurrently running. That said, the above studies actually
report that as more cores are available to a DBMS, thrashing may increase
because the degree of core contention becomes greater as workloads increase.
The impact of multi-cores on thrashing should thus be better understood.

3.2.2. The Transaction Complexity Construct

Transaction complexity is a construct governing transaction properties
that cause DBMS thrashing. In this construct we include the following
two variables: “selectivity factor” (SF) and “reference row subset region”
(ROSE), to be described. These two variables capture the number of rows
requested by an individual transaction and the contention among transac-
tions, respectively.

12

Selectivity Factor. This variable literally indicates selectivity factor [45] of a
read or write transaction. It actually captures transaction size, introduced by
Thomasian [9]. Transaction size represents the number of objects requested
by transactions. Transaction size can impact transaction throughput [6]. If
a transaction is large, that is, if a transaction accesses many objects, many
locks may be issued, and accordingly, many lock conflicts will occur when
the requested objects are already held by other transactions. The lock man-
agement overhead can create substantial latency in transaction processing.
Thus, transaction throughput may fall significantly. On the other hand, if a
transaction is small, that is, references just a few objects, then fewer locks
will be issued, fewer lock conflicts will be incurred, and thus the chance of
thrashing will decrease.

Reference Row Subset Region. This variable called “referenced row subset
region (ROSE)” captures the maximum region of rows (objects) that can
be referenced by transactions. The variable captures effective database size
in a previous study [9]. The variable is also involved with transactions’ hot
spots [12, 13, 24]. ROSE is specified as a percentage. The transactions can
be restricted to access only a subset of rows—for instance, the first quarter
(25%) or the first half (50%) of the rows—in a randomly-chosen table.

ROSE can affect DBMS thrashing. If ROSE is small, the degree of con-
tention on referencing the same rows will significantly increase. Substantial
locking overhead can be incurred during the transaction processing. If ROSE
is large, on the other hand, contention will decrease. Many rows in the ex-
tended ROSE, however, can be referenced by transactions. Many locks on
these many rows can be issued, thereby charging heavy lock management
overhead and contributing to a significant drop in throughput.

3.2.3. The Schema Complexity Construct

The schema complexity construct concerns aspects of the relational schema
that may affect DBMS thrashing. In this construct we include one variable,
“presence of primary keys (PK).” This variable is identified as a factor whose
presence in tables will reduce transaction processing time, thereby increasing
TP.

Presence of Primary Keys. This variable captures the influence of I/O on
DBMS thrashing. DBMSes can save substantial I/O in the presence of PK
when treating transactions referencing PK columns in a table, by avoiding
full scans through the primary index of the table. This reduced I/O can lead

13

to the increase of transaction throughput, and thus, DBMS thrashing may
occur later. We see that PK correlates with TP.

3.2.4. The Processing Complexity Construct

Processing complexity is a construct that concerns the transaction process-
ing capability of a DBMS. In this construct we include the single variable of
transaction response time.

Transaction Response Time. This is defined as the end-to-end time of com-
pleting a transaction on a DBMS.

It seems reasonable that the faster an individual transaction is processed,
the higher the throughput in the end, delaying the onset of thrashing.

Certainly, the average transaction response time is lowest when one user
exclusively submits transactions to the DBMS. As more active sessions are
added, however, average transaction response time increases smoothly (or
radically). Since having only one active session cannot realize a high through-
put, typically the DBMS allows many concurrent sessions (MPL) to run their
own transactions at the same time. As the number of user sessions grows, an
average individual response time might be increased, but overall transaction
throughput might keep rising (and perhaps falling later). Thus, we speculate
that the shorter response time, the higher throughput, thereby slowing down
the onset of thrashing.

In the meantime, this speculation may not hold. The response time
(which also includes computation and I/O time in performing a transac-
tion) may rise sharply due to synchronization overhead [9, 10, 12, 19, 22],
i.e., lock conflicts or snapshot isolation, among the concurrent transactions.
The overhead may eventually lead to an intolerable response time, at that
point most likely resulting in a significant drop in transaction throughput,
or thrashing.

In sum, transaction processing time can be an important variable to cap-
ture the impact (strength and direction) on thrashing caused by distinct code
and (concurrency control) performance of different DBMSes.

3.2.5. The Thrashing Point

This is the dependent variable of DBMS thrashing. The variable cap-
tures a specific value of the MPL where DBMS thrashing first occurs in a
given batchset. That is, it allows us to quantitatively measure the degree of
thrashing observed in a DBMS.

14

Thrashing Point
(TP)

Processing Complexity

Average Transaction
Processing

Time (ATPT)

Number of Processors
(numProcs)

Resource Complexity

Selectivity
Factor (SF) Schema Complexity

Transaction Complexity

Presence of
Primary Keys (PK)

Referenced Row
Subset Region (ROSE)

Figure 3: An Initial Model of Thrashing

4. An Initial Model of DBMS Thrashing

We now elaborate on an initial structural causal model of DBMS thrashing
that includes the variables. We later refine this model in Section 8.

4.1. Model Description

Figure 3 exhibits an initial model of DBMS thrashing. This model helps
us answer the second and third research questions presented in Section 1.2.

In the model we have the resource complexity construct described in Sec-
tion 3.2.1. This construct abstracts system resources important to process
transactions on DBMSes. The model includes this construct because of its
significance on transaction throughput. In the construct we include the vari-
able of the number of (logical) processors (numProcs), since numProcs is
treated as one of the primary system resources, and it emerges as an impor-
tant factor of thrashing as pointed by recent works [7, 8, 23].

Next, the model includes the transaction complexity construct described
in Section 3.2.2. This construct is deeply involved in the characteristics of
transactions causing throughput thrashing. The model therefore includes

15

this construct. In the construct we see the variables of reference row sub-
set region (ROSE) and selectivity factor (SF), each representing contention
among transactions and transaction size influencing DBMS thrashing [9, 12,
19, 20, 22]. These two variables concern transaction characteristics and thus
are grouped into the construct together.

In the model the schema complexity construct is included. This construct
includes one variable, PK, as described earlier (in Section 3.2.3). Primary
keys can help DBMSes significantly reduce I/O in transaction processing.
Because the PK variable concerns relational schema, we include the variable
in this construct, capturing the influence of the schema on thrashing.

In the middle of the figure is the construct of processing complexity de-
scribed in Section 3.2.4. The construct captures transaction processing capa-
bility of DBMSes, impacting thrashing. The model thus has this construct.
In this construct we include the variable of average transaction processing
time (ATPT). Transaction-blocking by lock conflicts delays transaction pro-
cessing times [9], resulting in thrashing. ATPT thus is treated as an impor-
tant factor of thrashing. It depends on some of the variables in the model.

The rightmost is the dependent variable of DBMS thrashing, represented
by “thrashing point (TP)” in the model, as discussed in Section 3.2.5. An ar-
row from one variable (construct) to another indicates a correlation between
two variables. The model includes some arrows above which a minus sign
is marked, indicating a negative correlation between two variables, meaning
that as a variable X increases, a dependent variable Y decreases.

In the model ATPT is dependent on some of the variables (numProcs
and PK) on its left and exerts influence on the outcome variable (TP) on
its right. The relationship among these variables—numProcs, PK, ATPT,
and TP—in the model is called mediation [25]. In other words, mediation
means a relationship, such that X carries two effects on Y , one direct from
X to Y , and the other indirect through M . Changes in X influences changes
in M , which in turn influences changes in Y . In Figure 3, for instance, X
corresponds to numProcs, Y to TP, and M to ATPT.

In addition, the model reveals that there is another relationship between
numProcs and ATPT, which is conditional along with ROSE. The relationship
among these variables—numProcs, ROSE, and ATPT—is called modera-
tion [25], which means an association between two variables X and Y when
the strength or direction depends on a third variable M . In Figure 3, for
instance, X corresponds to numProcs, Y to ATPT, and M to ROSE. In the
moderation the effect of X on Y is influenced or dependent on M .

16

a b c

I
numProcs / numProcs /

ATPT TP N/A
low medium

II
SF / SF / ROSE /
ATPT TP TP
high high medium

III
PK / PK /
ATPT TP
high high

IV
ATPT /

TP
medium

Table 1: Hypothesized Correlations and Levels on the Initial Model

Note particularly that the moderation concerns the mediation in the
model. Such a relationship is known as moderated mediation [46]. The ini-
tial model expects that there will exist the mediation through ATPT from
numProcs and from PK to TP, and in particular the mediation associated
with numProcs will be conditionally influenced by or dependent on the vari-
ation in ROSE.

4.2. Hypotheses

Table 1 represents hypothesized correlations and levels between variables
in the initial model. (A space of hypotheses drawn from the initial model
is given and elaborated elsewhere [47].) Group I indicates the correlations
involving the resource complexity construct with the processing complexity
construct and with TP. Hypothesis I-(a) [48, 49] concerns the correlation
between numProcs and ATPT. We expect the level of this correlation to
be low: the enhanced parallelism by the increase of processors will improve
ATPT, but since transactions are I/O-dominant and less computational, the
benefit will be hidden by the substantial I/O latency. Overall, the level of
the correlation will be low.

Hypothesis I-(b) [7, 8, 23] indicates the correlation between numProcs
and TP, and its strength is expected to be medium. As previously pointed
out in the previous studies, processor contention is treated as one of the
significant factors contributing to thrashing. Since our transactions are I/O

17

dominant, however, the effect of processors on thrashing will get offset by
I/O. Thus, we expect the strength to be medium.

Group II shows the correlations involving the transaction complexity con-
struct with ATPT and TP. Hypothesis II-(a) [9, 10] indicates the correlation
between SF and ATPT. We expect the strength to be high, as SF will mainly
determine the amount of I/O strongly affecting ATPT.

Hypothesis II-(b) [6, 9, 10] represents the correlation between SF and
TP. The level of the correlation will be high, as SF will mainly determine the
amount of I/O substantially influencing transaction throughput.

Hypothesis II-(c) [9] is the correlation between ROSE and TP. When
ROSE is large, row contention among transactions will get reduced. The
influence of ROSE on TP will thus be little. When ROSE is small, contention
for the same rows will significantly rise, thereby leading to thrashing. In that
case the strength will be high. The overall level will be in the middle, or
medium.

Group III indicates the correlations of PK with the processing complexity
construct and TP. Hypothesis III-(a) indicates the relationship of PK with
ATPT. We expect the level of this relationship to be high. As addressed
before, the utilization of a primary index created by PK allows a DBMS
to avoid full scans when the DBMS reads the rows referenced by transac-
tions. The DBMS can then substantially reduce I/O time in the presence of
PK. The reduced I/O time will significantly contribute to decreasing ATPT.
Hypothesis III-(b) represents the correlation between PK and TP. In the
presence of PK, the DBMS can increase the overall throughput because of
the saved I/O time. Thus, TP can be significantly increased. Therefore, we
expect the level of the correlation to be high.

Group IV shows the direct association between ATPT and TP. Hypothe-
sis IV-(a) [19, 20] predicts that the increase of ATPT will decrease the number
of completed transactions within unit time, resulting in a significant drop in
overall throughput. In contrast, the decrease of ATPT will help DBMSes
finish more transactions within unit time. Thus, the overall throughput will
go up, thereby delaying the onset of thrashing. Therefore, we expect the
overall strength of the correlation to be medium.

The following section discusses operationalizing each variable in the model.

18

5. Variable Operationalization

The Number of Processors. The operationalization for this variable relies on
machine specification. As described in Table 2, our individual experimental
machine is configured with a quad-core processor chip supporting hyper-
threading. We use four (five) values for this variable: one processor specified
by one core with hyper-threading disabled, two processors by one core with
hyper-threading enabled, four processors by two cores with hyper-threading
enabled, (six processors by three cores with hyper-threading enabled,) and
eight processors by four cores with hyper-threading enabled. In Linux, we
can alter numProcs by setting a specific number to “maxcpus” available in
/boot/grub/grub.conf. For Windows running SQL Server, numProcs can
be altered by our proficient lab staff via a BIOS option.

Selectivity Factor. The way we operationalize the variable is to vary the
number of rows accessed by each transaction. As mentioned before, the type
of transaction is read-only or write-only. For simplicity, we use a single SQL
statement within each transaction, to be exemplified shortly.

A read-only transaction can be specified by a SELECT statement. For
a read-only transaction, stating 1% as the maximum SF, we vary the SF
from 0.01% up to 1% by factors of 10. If SF is set to 1%, then we generate
a transaction reading 1% of consecutive tuples in a randomly-chosen table.
The maximum of 1% is determined to be that needed to obtain a reasonable
TPS value at an MPL. (It is not strictly necessary to cap the maximum
SF at 1%, though SF greater than 1% may not be prevalent in real-world
applications.)

A write-only transaction can be specified by an UPDATE statement. We
don’t use INSERT and DELETE for the write-only transaction, because the
two statements change the cardinality of a table, which introduces other ef-
fects, thereby confounding the experiment. In contrast, UPDATE preserves the
same semantics for operationalizing the write-only (hereafter, update-only)
transaction, because it avoids a change in cardinality. The influence of in-
sert/deletes on thrashing may be considered in the future work.

Unlike a read-only transaction where the maximum SF is 1%, for a
update-only transaction we vary the SF linearly. Instead we try 1%, 0.75%,
0.50%, and 0.25%. So if SF is set to 1% we generate transactions updating
1% of tuples in a randomly-chosen table. The reason for taking different
scales for each type of transaction is that the linear variation of update-only

19

SF is sufficient to see thrashing, considering that an update-only transaction
incurs exclusive locks while a read-only transaction incurs shared locks.

The SQL statements associated with the read-only and update-only trans-
action will be shown shortly, after we discuss the following variable.

Reference Row Subset Region. We operationalize this variable in the follow-
ing manner. For each transaction in a batch we first randomly choose a table
from our database schema and define the entire table rows as 100%. We can
then decrease the proportion of the rows to 75%, 50%, and 25% from 100%
for ROSE. For example, if ROSE is set to 50%, then a transaction can be
restricted to reference only the first half rows in the randomly-chosen table.
If ROSE is set to 100%, then all the rows in the table can be referenced by
the transaction. The value of ROSE will determine the range of rows that a
transaction can reach, and it will be used for specifying and restricting the
transaction.

Given a combination of values of SF (s) and ROSE (r) as described
above, a read-only or update-only transaction to be generated will look like
the corresponding one as follows:

Read-only trans. Update-only trans.

SELECT column name UPDATE table name

FROM table name SET column name = v

WHERE id1 >= a and id1 < b WHERE id1 >= a and id1 < b

where table name is a randomly-chosen table in the schema, a is an integer
value randomly chosen in the interval of [0, (c× r) - (c× s)], b is a + c× s, c is
the cardinality of the table (1M or 30K), v is an integer value or a character
string randomly generated along with a chosen column (column name), and
id1 is a sequential row ID.

For simplicity we use transactions on a single table, more complicated
transactions over multiples tables are left as future work.

Presence of Primary Keys. This variable is a dichotomous variable (that is,
primary keys are either present or absent). We can operationalize PK by
telling a DBMS whether or not to treat id1 as the primary key column of a
table when populating the table.

Batchset Generation and Execution. As visualized in Figure 4, a batchset
(termed in Section 3.1) contains a set of ten batches, each successively in-
creasing by 100. Thus, the biggest batch in the batchset consists of 1,000

20

Batch1 (MPL = 100)

Client1

Transaction1

SQL Statement1

…

…

runs

Client2

Transaction2

SQL Statement2

runs

…

Client100

Transaction100

SQL Statement100

runs

Batch10 (MPL = 1000)

Client1

Transaction1

SQL Statement1

…

…

runs

Client2

Transaction2

SQL Statement2

runs

…

Client1000

Transaction1000

SQL Statement1000

runs

Batch2 (MPL = 200)

Client1

Transaction1

SQL Statement1

…

…

runs

Client2

Transaction2

SQL Statement2

runs

…

Client200

Transaction200

SQL Statement200

runs

…

A Batchset

Figure 4: Batchset Visualization

clients. Each client in a batch has its respective transaction generated in the
way mentioned in the paragraph of ROSE. Transactions used in our exper-
iment as shown in Figure 1 use a simple database schema. The schema is
composed of two tables, each consisting of seven columns, five of which are
non-null integers, and the other two are variable-sized character columns. A
value for the first integer column, called id1, is sequentially generated (and
used for operationalizing SF). Each tuple is 200 bytes long, consisting of the
total 20 bytes from the integer type columns and the total 180 bytes from
the two character columns. Each table is populated with 1M (or 30K) tuples
having column values randomly-generated except the first column (for the
DBMS3 running on Windows).

A prepared batchset is presented to a DBMS subject. At each value of
MPL (equivalent to a batch) in that batchset we run all the transactions
of the clients in that batch until a CTL (connection time limit) value—two

3The above 30K cardinality was chosen only for this DBMS, as populating tables with
1M on that DBMS was not successful due to unknown system errors.

21

minutes—is reached, as described above in Section 3.1, and we make the same
batch run multiple times for repeatability. In each batch run we 1) measure
via JDBC and record the elapsed times of the transactions executed on that
DBMS and 2) count the number of completed transactions. These two mea-
sured data are individually used to later measure the values of dependent
variables introduced in Sections 3.2.4 and 3.2.5, whose operationalization is
discussed in the following.

Transaction Response Time. This variable is captured in our model by av-
erage transaction processing time (ATPT). We cannot directly control the
variable, but we can measure it. To operationalize (measure) this variable,
as mentioned above we complete a run of a given batchset. We then average
the recorded elapsed times for all the transactions executed in the batchset.
The averaged elapsed time is then the ATPT associated with the batchset.
This method can be applied to any DBMS. It is hard to directly observe what
locking schemes on objects (pages, tables, tuples, and columns) are employed
by different DBMSes, but the calculated ATPT seems to not only reflect the
impact of those schemes on TP but also captures different characteristics
among the DBMSes with respect to code and performance.

Thrashing Point. To operationalize the thrashing point (TP), for a completed
run of a given batchset we 1) compute the average transactions per second
(TPS) for a batch, based on the recorded data of the number of executed
transactions for multiple runs of that same batch, 4) calculate the average
TPS for each of the remaining batches in the batchset in the same way, and
finally 5) derive the TP for the batchset based on the following Equation 1:

TP =

{
|Bi| if TPSi > 1.2× TPSi+1, and ∀j > i + 1,TPSi > TPSj

∞ otherwise,
(1)

where i > 0, Bi is the i-th batch in a given batchset, and TPSi is the measured
TPS for Bi.

A specific TP is equal to the size of a batch (that is, a particular MPL),
at which the measured TPS value is more than 20% of the TPS measured
at the subsequent batch, and it is greater than the rest of the values of TPS
measured at all the subsequent batches in the same batchset. For instance,
the TP of DBMS X in Figure 1(a) is an MPL of 800 (|B8|), as the TPS
measured at an MPL of 900 (|B9|) was beyond 20%, lower compared with
that of the previous MPL of 800. Also, the TPS at the TP was higher than

22

the TPS at the last MPL of 1,000. In the figure that each point (or MPL), in
steps of 100, corresponds the size of each batch in the batchset used in that
experiment. Once thrashing begins, the observed thrashing should continue
until the last MPL in a trial.

The calculated TP quantitatively represents how many MPLs can be
tolerated by a DBMS for the batchset. The 20% threshold was determined
based on our observation, such that once a measured TPS dropped by 20%
or more than a previous TPS (at the TP), there was no case that subsequent
TPSes were bigger than the TP’s TPS.

In the following we describe a methodology for measuring DBMS thrash-
ing as TP, to collect empirical data, necessary to test the aforementioned
hypotheses in Section 4.2.

6. Thrashing Metrology

Metrology is the science of weights and measures or of measurement [50].
In this section we discuss the overall thrashing metrology for measuring
DBMS thrashing based on the variables described in the previous section.
The metrology includes a thrashing observance scenario, experiment infras-
tructure, and data analysis protocol.

Before elaborating on the scenario, we introduce the configurations of our
system used for the experiments in the next.

6.1. Experiment Configuration

Table 2 summarizes the system configuration used in the experiments in
our study. Our experimental machines are of identical hardware (H/W): i) a
quad-core processor chip supporting hyper-threading, ii) 8GB RAM, and iii)
1TB SATA HDD with 7200 RPM. Each machine runs Red Hat Enterprise
Linux (RHEL) 6.4 with a kernel of 2.6.32, except one running Windows Server
2008 dedicated for one of the DBMSes. Each machine exclusively runs one
of the five DBMSes.

This machine configuration represents a single value for these controlled
independent variables (whereas in Section 5 we listed other independent vari-
ables, which are each given several values). While we do not vary the system
configuration, we feel that other configurations (thus, other values for these
independent variables) could exhibit similar predicted behavior. Thus our
causal model predicts certain interactions and certain behaviors (values) of

23

System Specification

H/W
CPU Intel Core i7-870 Lynnfield 2.93GHz LGA 1156

95W Quad-Core Processor (in one socket)
RAM Kingston ValueRAM 8GB (4GB (2 × 2GB)

240-Pin DDR3 SDRAM DDR3 1333 (PC310600)
Dual Channel)

HDD Western Digital Caviar Black WD1001FALS 1TB
7200 RPM SATA 3.0Gb/s 3.5” Internal Hard
Drive

S/W

OS
Linux RHEL release 6.4 Santiago (kernel:

2.6.32)

DBMS

Windows Windows Server 2008 R2 Enterprise 6.1
MySQL 5.5.8
PostgreSQL 8.4.9
three proprietary DBMSes X, Y, and Z

Table 2: Environment Setup

the dependent variables as impacted by the specific settings of the indepen-
dent variables. We mention in passing that we assume the configuration
DBMSes i) support a concurrency control model of locking or snapshot iso-
lation, ii) rely on a filesystem (rather than direct I/O), and iii) are able to
support up to 1,000 connections (threads).

6.2. The Thrashing Observance Scenario

Figure 5 depicts our thrashing measurement scenario, the structure of
our experiments running a hierarchy of eight levels, ending at a particular
execution of a particular batch (at an MPL) of a particular batchset for the
underlying table(s), as part of a particular experiment run started on a stated
date and time on a designated machine using a specified release of a specific
DBMS, in the context of a specified experiment setup (stating batchsets,
the characteristics of the data, and various other parameters), of a selected
experiment scenario.

For each batch execution (during the two-minute CTL), the number of
completed transactions is counted to derive transactions per second (TPS).
We make five batch executions for each batch. For each batch TPS gets
averaged among the batch executions.

24

Scenario (e.g., Thrashing)
Experiment (batchsets, data spec, scenario parameter(s))

DBMS (DBMSes X, Y , and Z, PostgreSQL, and MySQL)
Machine (sodb6, sodb8–sodb11)

Experiment Run (on a particular date)
Batchset Instance (batchset number within batchsets)

Batch Instance (an MPL of 100–an MPL of 1,000)
Batch Execution (1–5)

Figure 5: Hierarchy of Batch Executions

As an example of this hierarchy, each point in Figure 1 corresponds to
the averaged TPS at each MPL. For the data in Figure 1, we utilized the
Thrashing Scenario, an Experiment specifying a nineteenth set (BS19) of 28
batchsets, specifying data with a cardinality of 1M (30K) rows, and specifying
the scenario parameters of 1) five executions per batch, 2) one core with
hyper-threading disabled, and 3) declared primary keys. We ran this batchset
on DBMSes X, Y , Z, MySQL, and PostgreSQL on the sodb9, sodb8, sodb6,
sodb11, and sodb10 machines from experiment runs for batchset number 19,
respectively, thus identifying a particular batchset instance, and examining
all ten batches (MPLs).

The Thrashing scenario is a plug-in that we added to a laboratory infor-
mation system, called AZDBLab [28].

6.3. AZDBLab Infrastructure

AZDBLab is a DBMS-oriented research infrastructure, supporting large-
scale scientific studies across different DBMSes [28]. It has been developed
for more than seven years by many people’s contribution. AZDBLab is
operated on a hardware lab of dedicated machines: one each for each DBMS
subject and one to host the central DBMS server to store data collected
from the DBMS subjects. Currently, a total of seven relational DBMSes are
supported, both open source and proprietary. The infrastructure has been
sufficiently robust to collect empirical (query execution) data on the Linux
and Windows operating systems, totalling over 9100 hours (more than one
year, 24x7) of cumulative time.

25

6.4. Running Experiments

Leveraging AZDBLab, we made tens of experimental runs of the Thrash-
ing scenario. To run the scenario, we used five relational DBMS subjects
available in AZDBLab, as shown in Figure 1. (The remaining two DBMSes
could not be used because of some technical issues that emerged on those
two while running the scenario.)

While running the experiments AZDBLab collected each batchset’s trans-
action elapsed time and TPS data measured on the DBMS subjects.

Our experience studying varying query time [51, 52] and query subopti-
mality [53] is that AZDBLab facilitated developing and running the thrashing
scenario with multiple configurations of the experiments. (That said, this
does not mean that AZDBLab is a requirement for this thrashing study.)
We plan to make AZDBLab in public sometime in the next year after en-
hancing the system.

Before proceeding with the evaluation of the model using the measured
data, we asked two related questions: How could we make sure that the
data were clean enough to proceed with the evaluation of the model? And
is there a way of assessing the validity of the acquired data? To address this
underlying concern, we designed a sophisticated data analysis protocol.

6.5. Thrashing Analysis Protocol

The protocol, termed Thrashing Analysis Protocol (TAP), performs a
suite of sanity checks on the measured data, drops data failing to pass the
checks, and then computes the TP (thrashing point) for each batchset in the
retained data. TAP consists of the four steps.

In Step 1 TAP conducts eight sanity checks partitioned into three classes.
The first class is the experiment-wide cases for which not a single violation
should occur in a run, consisting of four sanity checks. (1) The number of
missing batches indicates how many batch instances (BIs) that were supposed
to have been executed with a batchset (10), but were not, for whatever rea-
son. (2) The inconsistent processor configuration violation occurs when the
number of processors specified in a given experiment specification is incon-
sistent with the current processor configuration on an experiment machine.
(3) The number of missed BE violations represents how many BIs did not
have the specified number of repetitions required. (4) The other DBMS pro-
cess violation identifies how many BSIs were run together with other DBMS
processes. We enforce that when a BSI gets run on a chosen DBMS, all the
other DBMSes’ processes should be deactivated.

26

The second class of sanity checks concerns batch executions (BEs). Each
of these three sanity checks could encounter only a few isolated violations,
but we expect the violation percentage to be low. (5) The zero TPS violation
catches BEs where TPS was zero at the starting MPL in their BSIs. (6) The
connection time limit violation identifies the BEs that violated the specified
CTL. (7) The abnormal ATPT violation indicates how many BEs revealed
abnormally high or low ATPT.

The final class involves one check over a BSI. (8) The transient thrashing
violation examines how many BSIs experienced transient thrashing, which
indicates that the TPS measured at a determined TP is lower than any of
the TPSes measured at the MPLs bigger than the TP. Once the thrashing
phase begins, it will be rare to observe that the throughput rises back up at
greater MPLs.

In Step 2 TAP drops BEs that exhibit specific problems throughout
Step 1. We take the union of BEs caught by the second class of sanity
checks ((5), (6), and (7)), and remove those BEs from further consideration.

In Step 3 TAP looks at the retained BEs for each BSI and then determines
if these BEs in concert exhibit specific problems. If so, we drop the entire BSI
(having its own BEs). Step 3 consists of the three sub-steps. Step 3-(i) drops
BSIs that do not have all the MPLs in the corresponding BSIs. Recall that
each batchset has ten batches. If there is any BI dropped in the same BSI,
we drop that BSI. Step 3-(ii) drops raw BSIs revealing transient thrashing, as
specified in (9). Step 3-(iii) drops retained BSIs showing transient thrashing.

In Step 4 TAP calculates the TP for each of the retained BSIs along
with Equation 1. After finishing Step 4, we proceed with conducting (ex-
ploratory or confirmatory) evaluation on the model with the measured data:
the retained BSIs and their corresponding TPs.

Now we discuss the exploratory analysis on the initial model.

7. Exploratory Model Analysis

In this section we summarize the experimental data used for the ex-
ploratory analysis and present the evaluation results on the initial model.

7.1. Descriptive Statistics

For the exploratory evaluation we used the aforementioned five relational
DBMSes. We operationalized four different numProcs values and two values
(that is, presence and absence) for PK. As exhibited in Table 3, we completed

27

Exploratory Confirmatory
Number of Experiment Runs 40 50
Number of BatchSet Instances (BSIs) 1,120 1,400
Number of Batch Instances 11,200 14,000
Number of Batch-instance Executions (BEs) 33,600 70,000
Total Hours 3,127 5,170

Table 3: Desc. Stat. for the Exploratory and Confirmatory Exp. Runs

40 experimental runs, each taking a few days to a week on a single machine
(with the disk drive humming the entire time), totaling 3,127 hours (about
4 months) of cumulative time.

Considering that each of the 40 completed runs contained 28 batchsets
(operationalized by a combination of four ROSE values and seven SF values),
we had a total of 28 × 40 = 1,120 BSIs. As each BSI had ten batches, we
had 1,120 × 10 = 11,200 BIs. As each batch was executed three times, we
had 11,200 BIs × 3 = 33,600 BEs. In short, our exploratory study concerns
the 40 completed runs, involving 33,600 BEs.

TAP was applied to the 33,600 BEs. In Step 1 we identified all the BEs
revealing problems. We then dropped in concert 2,507 BEs (about 7.46%) in
Step 2. In Step 3 we subsequently dropped in concert 109 BSIs (about 9.8%)
(from 1,112 BSIs calculated based on the BEs retained after Step 2). In
effect, a total of 1,003 BSIs survived throughout Steps 2–3. For the retained
1,003 BSIs we calculated the TPs based on Equation 1 in Step 4. As a result,
we detected a total of 487 thrashing BSIs from the five DBMSes.

Several conclusions from the thrashing BSIs can be drawn. First, every
DBMS exhibited thrashing. The number of thrashing BSIs differed by about
a factor of three among the five DBMSes. The DBMS thrashing phenomenon
thus must be a fundamental aspect of either the algorithm (concurrency
control), the creator of the algorithm (human information processing), or
system operation context (environment). Note that our model covers all of
these effects. About half of the BSIs (487 out of 1,003) exhibited thrashing
somewhere in the range of varying MPLs in the exploratory experiment;
in particular, there were of the thrashing 487 BSIs for which the DBMSes
revealed “early” thrashing under MPL 300.

The thrashing 487 samples consisted of a group of 188 read batchsets
(hereafter, read group) and a group of 299 update batchsets (hereafter, update

28

group). Our evaluation was performed separately on these two groups.

7.2. Exploratory Evaluation Results

In this section we discuss the statistical analysis results on the initial
model in Figure 3.

7.2.1. Correlational Analysis

We performed correlational analysis using cor.test() of R [54]. We tested
hypothesized correlations and levels exhibited in Table 1.

For the read group, I-(a), III-(a), III-(b), and IV-(a) were supported while
II-(a), II-(b), and II-(c) were not supported. I-(b) was not supported, because
the actual direction of its correlation was positive while the hypothesized
direction was negative as depicted in Figure 3. In the update group I-(a),
I-(b), and IV-(a) were supported whereas II-(a), II-(b), and II-(c), and III-
(a), III-(b) were not supported. It seemed that the variables of SF and
ROSE had some unknown challenges in empirically observing correlations
with ATPT and TP.

7.2.2. Causal Mediation Analysis

We performed causal mediation analysis [27] via mediate() in the
mediation package in R. We tested the mediation through ATPT to TP,
moderated by ROSE and PK. In both groups the moderated mediation was
not significant, perhaps because of ROSE and SF that were not significant.
However, the mediation through ATPT to TP from numProcs was signif-
icant, as was that from PK in the read group and from numProcs in the
update group.

7.2.3. Regression Analysis

The performance of the model as a whole was evaluated via the value
of R-squared (R2) [25], the ratio of explained variance to sample variance
of a dependent variable of the model. The computed R2 tells us how well
the model can fit the measured data. If the value of R2 is close to 1 (100%
variance), all contributing factors are identified. If the R2 is close to zero
(0% variance), the model is not useful, as the factors included in the model
cannot explain much of the variance.

Our regression analysis was conducted using multi-linear regression, a
well-known statistical tool for modeling the relationship between a continuous
dependent variable and multiple independent (explanatory) variables that are

29

continuous or dichotomous [25]. MLR was a perfect fit for the initial model,
satisfying the variable condition for the application of MLR. (Testing the
assumptions of MLR is discussed in Section 9.2.)

Using MLR, we first performed regression on TP. We used lm() of R and
examined the overall fit of the model on each group. The amount of variance
explained (R2) for TP was 11% (14%) for the read group (update group). We
also performed regressions on ATPT that has dependency on the variables in
the model. The initial model explained 12% (11%) of the variance of ATPT
for the read (update) group.

7.2.4. Path Analysis

We performed the path analysis on the initial model, to determine which
paths were statistically significant, using regression coefficients provided by
the outcome of lm().

In the read group the significant paths were (a) from numProcs to ATPT,
(b) from PK to ATPT, (c) from numProcs to TP, (d) from ATPT to TP,
and (e) from PK to TP in Figure 3, and their weights were (a): −0.19, (b):
−0.30, (c): 0.11, (d) −0.17, and (e): 0.25, respectively.

On the other hand, there were not significant paths: (i) from ROSE to
TP, (ii) from SF to TP, and (iii) from SF to ATPT, in addition to (iv) from
numProcs to ATPT, moderated by ROSE, and (v) from SF to ATPT, mod-
erated by PK. We thought we understood these paths, and thus we included
them in the initial model. However, it seemed that the operationalization of
ROSE and SF unexpectedly incurred confounding behavior. In future work,
other ways of operationalizing these variables can be further explored, and
we discuss possible improvements in Section 7.3.

To continue our model exploration, we performed a regression analysis on
the reduced model, removing the confounding paths. Consequently, all the
retained paths in the reduced model were significant. Their weights were (a):
−0.12, (b): −0.29, (c): 0.13, (d) −0.17, and (e): 0.22, respectively. There
was little difference between the corresponding weights of the full (initial)
and reduced models. In other words, there was little discrepancy between
the full and reduced models. This implies that the reduced model did not fit
the data any worse than the full model including the eliminated paths.

In the update group the significant paths were (f) from numProcs to
ATPT, (g) from numProcs to TP, and (h) from ATPT to TP in Figure 3,
and their weights were (f): −0.29, (g): −0.45, (h): −0.11, respectively.

The above insignificant paths in the read group also resulted in being not

30

significant in the update group, plus the paths involving PK. Again, we in-
cluded all these paths in the initial model for the update group, as we thought
we understood them, which was not true. The better operationalization of
PK as well as ROSE and SF need be investigated in the future work.

As did in the read group, we performed a regression analysis on the
reduced model, eliminating the paths that were not significant. As a result,
the reduced model yielded no insignificant paths. The respective weights of
(f), (g), and (h) were −.30, −0.43, and −0.10. Both the full and reduced
models did not reveal statistical discrepancy. Hence, the reduced model did
not fit the data more poorly than did the full model on the update group.

7.3. Lessons

We have learned several things from the preliminary study on the initial
model. First, some variables were not statistically significant. Specifically,
the associations of ROSE and SF with ATPT and TP (thrashing point) were
not significant for the read and update groups. In addition, the correlations
involving PK were not significant in the update group. There might be a
general lack of understanding of those variables or perhaps their operational-
ization.

Here are some possible suggestions to better operationalize the variables.
Concerning ROSE one way would be to have each transaction in a batch ref-
erence a contiguous chunk of table rows in sequence within a specified region
(by a ROSE value). If a transaction reaches the last chunk of rows in the
region, then the next transaction could access the first chunk of rows at the
beginning of the region. If so, any row in that region would be referenced
with equal probability by the transactions. Another would be to have every
transaction access the same number of discrete rows (using ‘IN’ predicate)
with even access probability. For SF, it would be possible to consider extend-
ing the value range from the minimum cardinality (or a single row) to the
maximum cardinality (or 1M rows) of the table. It is hard to see a potential
problem with operationalizing PK, because it is too obvious.

Also, it would be worth exploring the existence of other variables per-
turbing the associations involving ROSE, SF, and PK (only in the update
group).

Second, the read and update groups showed differences in the observed
correlations. 1) The direction of a correlation between the same correspond-
ing variables was not consistent between the read and update groups. The
correlation of numProcs with TP was positive in the read group whereas it

31

was negative in the update group. 2) PK was not significant in the update
group while it was significant in the read group. 3) The amount of variance
explained by the model for the read group was different than that of the
update group.

Third, we observed across the DBMSes different thrashing behaviors be-
tween the read and update groups. Specifically, for DBMS X the average
TP of the update (read) group was about 614 (870), and for DBMS Y , it
was about 266 (462) in our exploratory experiments. The other DBMSes
also revealed a similar tendency: the overall thrashing on the update group
occurred earlier, perhaps because of heavier locking overhead.

For these reasons, we concluded that our model should be divided up
into two parts, explicating the respective thrashing origins for the read and
update groups, resulting in the refined model to be discussed now.

8. A Refined Model of DBMS Thrashing

In this section we give a refined model of DBMS thrashing and present
and discuss in detail a space of hypotheses related to the refined model. The
refined model is depicted in Figure 6. The specific values above arrows result
from our path analysis to be discussed in Section 9.3.4. We elaborate on the
values in that section.

8.1. A Refined Model for the Read Group

As seen in Figure 6(a), the variables of ROSE and SF and their associated
associations were removed because we do not adequately understand how
they interact with other variables of interest. The direction of the correlation
between numProcs and TP was changed from negative to positive because
we observed that the benefit of utilizing more processors for the read group
dominated the expected contention among the processors, we feel due to
much less locking overhead. So we now expect the direction to be positive.

Let’s examine the set of hypotheses drawn from the refined model in
Figure 6. Such relationships are specific associations between the constructs
(or, their variables), as hypothesized by this predictive causal model.

One factor of the read model is the resource complexity construct. We
hypothesize that this construct affects DBMS thrashing both directly, as
depicted by the top line, and indirectly, via ATPT.

32

Processing Complexity

Number of
Processors
(numProcs)

Resource Complexity

Thrashing Point
(TP)

Presence of
Primary Keys (PK)

Schema Complexity

Average Transaction
Processing

Time (ATPT)

-0.339

0.336

-0.420

0.257

-0.280

eatpt = 0.843

etp = 0.927

(a) The Model of the Read Group (Read Path Model)

Number of
Processors
(numProcs)

Resource Complexity

Thrashing Point
(TP)

Processing Complexity

Average Transaction
Processing

Time (ATPT)

-0.342

-0.369

-0.128

eatpt = 0.957

etp = 0.920

(b) The Model of the Read Group (Update Path Model)

Figure 6: A Refined Model of DBMS Thrashing (Path Diagrams on the
Batchset Groups in the Confirmatory Experiment)

33

Consider numProcs first. Multicores present a great opportunity to
DBMSes [8, 23]. Multi-core processors enable DBMSes to process more trans-
actions than a single processor does, due to increased parallelism. The pre-
vious studies [8, 23], however, reported that DBMSes experienced thrashing
by multicores because of core contention, but their studies were conducted
on one specific DBMS as mentioned in Section 2. In general, transaction
processing in most DBMSes can be sped up by using multi-core processors.
We thus hypothesize the following.

Hypothesis 1: As the number of processors increases, the thrashing
point will increase.

As mentioned before, the increased parallelism using more processors can
speed up transaction processing. Although overall throughput could fall
off due to contention among the processors, we anticipate that as far as
individual transaction response time is concerned, it will be shorter when
more processors are presented.

Hypothesis 2: As the number of processors increases, ATPT will decrease.

Concerning processing complexity, ATPT directly influences DBMS thrash-
ing. Specifically, as transactions’ response time gets shorter, the overall
throughput can rise. On the contrary, as the response time gets longer, the
throughput may significantly fall at a certain point, resulting in thrashing.

Hypothesis 3: As ATPT increases, the thrashing point will decrease
(i.e., thrashing will occur earlier).

We hypothesize that in the presence of PK, TP will increase. PK allow
DBMSes to avoid doing full scans on the tables referenced by transactions.
When PK exists, a DBMS can thus speed up processing transactions ac-
cessing PK columns. As a result, the overall transaction throughput will
increase, leading to an increase of TP as well.

Also, we hypothesize that ATPT will decrease if PK exists. Consider-
ing that I/O is one of the significant components in transaction processing,
DBMSes can significantly benefit from a primary index automatically cre-
ated when the PKs are declared. The I/O saved through a primary index
will suppress a significant rise in processing delay incurred when transactions
simultaneously read or update rows. Furthermore, for a given SF, ATPT will
be reduced in the presence of PK. That is, the slope between SF and ATPT
will be lower when PK is present.

34

Hypothesis 4: In the presence of primary keys the thrashing point will
increase.

Hypothesis 5: In the presence of primary keys, ATPT will decrease.

8.2. A Refined Model for the Update Group

ROSE and SF were eliminated in both portions of the model. PK was also
removed, with its associated correlations. In comparison with Figure 6(a),
the direction of the association between numProcs and TP was retained
because of the supported hypothesis on the association.

Now let’s discuss the hypotheses drawn from the update model. In con-
trast to the read model, we focus on a drawback in taking advantage of multi-
core processors in update transaction processing. Enabling more processors
could incur serious competition among the processors in utilizing shared re-
sources available within the DBMS internals. Increased core contention can
hurt transaction throughput, or slow down transaction processing.

Hypothesis 1: As the number of processors increases, the thrashing
point will decrease.

Concerning the processing complexity construct, we expect that the more
processors, the faster ATPT in the update group, because of the same reason
described in the read model.

Hypothesis 2: As the number of processors increases, ATPT will decrease.
For the same reason described in the read model, we expect that the

longer ATPT, the shorter TP.

Hypothesis 3: As ATPT increases, the thrashing point will decrease
(i.e., thrashing will occur earlier).

8.3. The Revised Hypothesized Correlations and Levels

Table 4 exhibits the eight hypothesized correlations on the refined model.
The corresponding levels, separated by ‘/’ for the read/update groups, are
shown in parentheses. Note that compared to Table 1, group II no longer
exists because the variables of ROSE and SF and relevant correlations are
removed in the refined model. In the read group every cell is as in Table 1,
except the levels that get decreased to medium from high or increased to
medium from low. This is because of our observation that these correlations
were weaker or stronger than we thought in the initial model.

35

a b

I
numProcs / numProcs /

ATPT TP
(low / medium) (low / low)

III
PK / PK /
ATPT TP

(medium / N/A) (medium / N/A)

IV
ATPT /

TP
(medium / low)

Table 4: Revised Hypothesized Corr. and Lev. on the Read/Update Groups

In the update group we do not have group III because PK is not present
in the refined model. The levels in group III are thus denoted as ‘N/A.’ Also,
the level of Hypothesis IV-(a) is decreased to low from medium compared to
Table 1, as we saw that this correlation was weaker than we thought in the
initial model.

9. Confirmatory Model Analysis

In this section we provide descriptive statistics on the confirmatory ex-
periment runs and present statistical analysis results on the refined model.

9.1. Descriptive Statistics

For the confirmatory evaluation, we used the same five relational DBM-
Ses and kept the same operationalization except increasing one more value
for numProcs. As previously provided in Table 3, we performed 50 experi-
ment runs, totaling 5,170 hours (about 7 months) of cumulative time. Note
that this data was completely separate from that used in the exploratory
evaluation discussed above.

We had a total of 28 (batchsets) × 50 (runs) = 1,400 BSIs. As each
BSI had ten batches, we had 1,400 × 10 = 14,000 BIs. As each batch was
executed five times, we had 14,000 BIs × 5 = 70,000 BEs. In short, our
confirmatory study concerns the 50 completed runs, involving 70,000 BEs,
more than twice as many BEs as the exploratory study had.

As was done in the exploratory study, TAP was applied to the 70,000 BEs.
Tables 5, 6, and 7 exhibit the step-wise TAP sanity check results. Table 5

36

1 Number of Missing Batches 0
2 Number of Inconsistent Processor Configuration Violations 0
3 Number of Missed Batch Executions 0
4 Number of Other Executor Violations 0
5 Number of Other DBMS Process Violations 0

Table 5: Experiment-Wide Sanity Checks in the Confirmatory Evaluation

6 Percentage of Zero TPS 0.036% (25/70000)
7 Percentage of Connection Time Limit Violations 3.5% (2434/70000)
8 Percentage of Abnormal ATPT 0.97%(679/70000)

Table 6: Batch Execution Sanity Checks in the Confirmatory Evaluation

9 Percentage of Transient Thrashing 0% (0/1400)

Table 7: A Batchset Instance Sanity Check in the Confirmatory Evaluation

shows no violation in the experiment-wide sanity checks; no missing batches,
no mismatching processor configuration, no missed BEs, no other running
executors, and no other DBMS processes.

In the BE sanity checks shown in Table 6, we had 0.036% zero TPS
violations, 3.5% connection time limit violations, and 0.97% abnormal ATP
violations. These rates were very low. As exhibited in Table 7, we had no
violations of (9) concerning the batchset sanity check. Our confirmatory data
passed all of these sanity checks.

At Step 2 we drop the BEs identified as violation in Table 7. Table 8
shows how many BEs were valid at the beginning of Step 2 and after Step 2:
about 4.39% BEs were dropped. Table 8 also exhibits how many BSIs were
dropped after each sub-step in Step 3. As indicated by the last row of
Step 2, interestingly we had no dropped BSIs when starting Step 3; every
BSI survived. At Step 3-(i) we dropped BSIs that did not have ten batches.
There were 61 BSIs dropped at this step. Step 3-(ii) dropped BSIs revealing
transient thrashing at Step 1. Here there was no need to drop BSIs, as
indicated by Table 7. Step 3-(iii) again dropped BSIs revealing transient
thrashing among the remaining BSIs until this step. No BSIs were dropped.
In sum, we dropped in concert about 4.4% BSIs throughout Step 3.

At Step 4, we computed the TP for each of the retained BSIs in the same

37

At Start of Step 2 70,000 BEs
At Start of Step 2 1,400 BSIs
After Step 2 66,927 BEs (4.4% dropped)

At Start of Step 3 1,400 BSIs (0% dropped)
After Step 3-(i) 1,339 BSIs
After Step 3-(ii) 1,339 BSIs
After Step 3-(iii) 1,339 BSIs (4.4% dropped)

Table 8: The Number of Batch Executions and Batchset Instances after Each

Sub-Step

way as done with the exploratory experiment. We detected thrashing in a
total of 482 samples, consisting of 148/334 samples from the read/update
groups. The percentage of the thrashing batchsets varied decreased to 36%
from 49% in the exploratory experiment.

We reaffirmed in the confirmatory experiment that 1) every DBMS showed
thrashing, and 2) there were still many BSIs (about one-thirds (149)) for
which the DBMSes experienced early thrashing, that is, under MPL 300, in
the confirmatory experiment.

9.2. Testing Assumptions of Multi-Linear Regression

Before fitting the model via multi-linear regression (MLR), we need to
check several assumptions required by MLR. One key assumption is inde-
pendence of residuals. This assumption expects that the residuals should be
uncorrelated serially from one sample to the next; namely, the level of er-
ror should be independent of when a sample is collected (time dependency).
(Note that patternless, random residuals imply independence of errors.)

The assumption was tested via the Durbin-Watson (D-W) statistic [55].
We employed durbinWatsonTest() in R [54] to test the assumption against
our confirmatory data. The resulting D-W scores of TP were 1.4 and 1.1 for
the read and update groups. For the data to not indicate auto-correlation,
we need a score of two. But the computed scores indicated some type of
positive correlation among the residuals in our data. We also computed the
D-W scores of ATPT but still observed such a positive correlation.

Indeed, this violation was somewhat expected, in that 1) a limited num-
ber (e.g, only five) of DBMS subjects were used in our experiment, and 2) the
overall violation results from only one (or at most two) of the DBMSes that
had violating samples. To further look into this violation, we also calculated

38

the per-DBMS D-W statistics for TP. As a result, we identified several possi-
ble issues, including 1) per-DBMS low sample size, 2) some DBMSes reveal-
ing auto-correlated samples, and 3) clustered TP and ATPT across DBMSes.
Nevertheless, in general the violation did not invalidate the model [55]. (In
future work more samples per DBMS are needed and then checked to see if
the D-W test can be passed at an individual DBMS and the overall level. If
this violation persists in bigger sample sizes, a correction using the Cochrane-
Orcutt estimation method [56] may be applied.)

Another key assumption is homoscedasticity. This assumption tests whether
the variance of residuals is constant along the line of the best fit. ncvTest()
of R was used for testing this assumption. The p-values of the test were 0.20
(0.47), greater than 0.05, for the read (update) group, which satisfied the
homoscedasticity assumption.

The third key assumption is multicollinearity. This assumption tested
is whether two or more independent variables are highly correlated with
each other. vif() of R yielded variance inflation factors (VIFs) on the data.
The outcome of vif() showed that none of our independent variables had
the square root of its corresponding VIF higher than 2, meaning no high
correlation of the independent variables. Our data thus satisfied the multi-
collinearity assumption.

The next key assumption is no outliers. We can test by using Cook’s
Distance (CD) [57]. We used cooks.distance() of R to test this assumption.
The data did not show any significant outliers because the CD values were
fewer than 1.

The last key assumption is (5) normality of residuals. This assumption
indicates that the residuals should be approximately normally distributed;
that is, the observed and predicted values should come from the same distri-
bution [58]. A model satisfying this assumption is expected to predict values
higher than actual and lower than actual with equal probability.

The assumption was tested by obtaining the histogram of the residuals
and superimposing a normal curve on that histogram for each group as shown
in Figure 7. The residuals of our data appeared to follow very approximate
normality.

All things considered, our confirmatory data appears to satisfy the MLR
assumptions.

9.3. Confirmatory Evaluation Results

We now evaluate the refined model in Figure 6.

39

Residuals

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

40

(a) Read-only Batchset Group

Residuals

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
10

20
30

40
50

(b) Update-only Batchset Group

Figure 7: Testing Normality of Residuals on the Confirm. Eval. Data

Variable TP ATPT
numProcs H1: 0.31 H2: -0.32

ATPT H3: -0.26 —
PK H4: 0.21 H5: -0.55

Table 9: Testing Hypotheses 1–5: Correlations on the Read Group

9.3.1. Correlational Analysis

We conducted the confirmatory pair-wise correlational analysis on the
refined model.

Table 9 exhibits the computed correlation factor associated with each
hypothesis on the read group. All the hypotheses (H1–H5) were supported
and significant. The actual levels of H1 and H5 were consistent with our
predictions in Table 4. The actual levels of H2, H3, and H4 were medium, low,
and low while the predicted levels of low, medium, and medium, respectively.
Note that the actual and predicted levels were very close. Such a minor
difference was acceptable. Thus, the direct correlations of the read model
were empirically confirmed by these correlational analysis results.

Table 10 shows the computed correlation factor associated with each hy-

40

Variable TP ATPT
numProcs H1: -0.36 H2: -0.16

ATPT H3: -0.13 —

Table 10: Testing Hypotheses 1–3: Correlations on the Update Group

pothesis for the update group. As for the read group, all the hypotheses
(H1–H3) for the update group were supported and significant. The actual
levels were consistent with the predicted levels by the model. Therefore, the
direct correlations of the update model were also empirically confirmed by
the correlational analysis results shown in Table 10.

9.3.2. Regression Analysis

We performed a regression over the independent variables of the refined
model that predicts TP over the data obtained from the confirmatory ex-
periment. Specifically, we computed the overall fit of the refined model for
the read and update groups using lm() in R. For the read group our model
explained 14% of the variance of the dependent variable of DBMS thrashing.
For the update group our model explained 15% of the variance of DBMS
thrashing. These regression results showed that the refined model could to
some extent successfully explicate the source of variance on TP.

We also conducted a regression on ATPT that is dependent on some of
the independent variables in the model. The refined model explained 29%
of the variance for ATPT on the read group. The removed variables and
associations did not decrease the variance explained. We found that in the
confirmatory experiment most of the DBMSes agreed with the direction of
the correlations of numProcs and PK with ATPT. We suspect that such an
agreement made a contribution to the high variance explained.

In contrast, the amount of variance explained by the model for the update
group was 8%. We attribute the decrease to the variables and associations
removed from the exploratory model.

9.3.3. Causal Mediation Analysis

We conducted causal mediation analysis on the refined model, as was
done with the exploratory evaluation. For the read group, we reaffirmed the
statistical significance of the mediating effects of PK and numProcs via ATPT
on the TP. For the update group, we also verified the statistical significance of

41

the mediating effect of numProcs via ATPT on TP. These results demonstrate
that the mediation via ATPT on TP in the refined model was empirically
verified for each group.

9.3.4. Path Analysis

We performed the path analysis for the refined model in Figure 6, to
determine what paths in the model were statistically significant, using the
path coefficients from the regression outputs of the read and update model
fits. We computed the total (indirect + direct) effect on each path in the
model.

Regarding the read group, all the paths were significant as shown in
Figure 6(a). The direct effect (−0.42) of PK to ATPT was bigger than that
(−0.34) of numProcs to ATPT. In addition, the total effect of numProcs
on TP was 0.43 (= −0.34 × (−0.28 + 0.34)), which was greater than that
(−0.42× (−0.28 + 0.26) of PK and that (−0.28) of ATPT on TP.

For the read group, PK and numProcs were the most significant factors on
ATPT and TP in the model, respectively. In the confirmatory experiment
we added one more value (or, six processors) in the operationalization of
numProcs. This perhaps may have contributed to the increased significance.
More investigations about the increase are needed. That said, we reaffirm
that numProcs and PK had positive correlations with TP, and ATPT also
had a negative correlation with TP.

Concerning the update model, all the paths were significant, as illustrated
in Figure 6(b). The total effect of numProcs to TP was −0.34 × (−0.13 −
0.37) = −0.33, which is stronger than that (-0.13) of ATPT to TP. For the
update group, it was numProcs that showed the most significant factor on
both ATPT and TP. We reassert that numProcs and ATPT had negative
correlations with TP in the refined model.

In Figure 6, the error variances of ATPT (eatpt) and TP (etp) were 0.84
and 0.93 for the read group and 0.96 and 0.92 for the update group, each

computed by
√

(1−R2
atpt) and

√
(1−R2

tp). There is much room to improve

the model, such as exploring and then examining more variables and associ-
ations to further explain the thrashing variance. That said, our model is a
contribution, as it has already identified the significance of several variables
(that is, the number of processors, presence of primary keys, and average
transaction processing time) and their associations that have a definite im-
pact on thrashing.

42

Lastly, the overall fits of the read and update path models were estimated
as follows.

Fit for the read model = 1− e2atpt × e2tp = 1− 0.842 · 0.932 = 0.39

Fit for the update model = 1− e2atpt × e2tp = 1− 0.962 · 0.922 = 0.23 (2)

The fit (0.39) of the read model is lower than that (0.23) of the update model.
This difference was primarily because the variance explained by ATPT was
higher in the read model than in the update model. To increase the fit of
the update model, the amount of variance explained by ATPT should be
improved by looking into other possible variables and their correlations that
have significant impact on ATPT.

The estimated fits also indicate that the update model has more room
for improvement than the read model does. As mentioned above, it would
be advantageous to explore other variables and investigate their causal rela-
tionships on TP. Again, our model provides a good basis for such variable
and correlation exploration.

In sum, all the confirmatory evaluation results provide empirical support
for the novel structural causal model of DBMS thrashing in this article that
we introduce here.

10. Engineering Implications

While developing the refined model through a series of large-scale ex-
periments managed by AZDBLab over about a year, we uncovered several
surprising results that provide system-context indications as to how modern
transaction processing can be further improved.

• Every DBMS used in our experiment exhibited thrashing. Previous
studies [8, 23] pointed out that some open-source DBMSes such as
PostgreSQL and MySQL experienced thrashing. We show that propri-
etary DBMSes are also vulnerable to thrashing.

• Thrashing in DBMSes occurred extensively over increasing MPLs. In
particular, some DBMSes experienced early thrashing, under an MPL
of 300. It was surprising to see that DBMSes were sometimes over-
whelmed by very simple read-only (update-only) including just select
and projection (update) clauses.

43

• Lastly, thrashing was not repeatable in DBMSes. There were two fla-
vors of DBMS non-repeatability that we observed. The first is “intra-
non-repeatability”: given the same batchset thrashing was not always
observed in DBMSes. Specifically, for a particular batchset the DBMSes
thrashing in the exploratory experiment but not in the confirmatory
experiment, and vice versa. The second is “inter-non-repeatability”:
given the same batchset, thrashing was experienced by some DBMSes
but not by others. We found that query optimizers of some of the
DBMSes revealed a heuristic nature of execution plan selection. We
therefore suspect that the non-repeatability characteristics is associ-
ated with such a heuristic.

These results suggest that research on thrashing should be pursued in con-
junction with multi-core architectures. Fortunately, the causal model in Fig-
ure 6 helps point out specifically where that research might be focused.

Our model implies some engineering implications for DBAs and for DBMS
researchers and developers, for better understanding and properly coping
with thrashing. (These implications are complementary to the practical
lessons already given in a previous literature [59].)

1. For read-only workloads, we have the following general advice.

• DBAs should enable multi-core processors. DBMSes can utilize
their parallel processing ability when serving the workloads. In
our experiment DBMSes showed increased TP (thrashing point) as
more processors were available. DBAs thus may consider exposing
to DBMSes as many processors as available.

• DBAs should continue to utilize primary keys whenever possi-
ble. We have observed in our experiment that although work-
loads were increased, DBMSes were still scalable, resulting from
their primary index made available by primary keys. We thus
can infer that reducing I/O overhead can be a critical factor in
preventing transaction throughput from falling off at a lower MPL.
DBAs therefore may consider several approaches to improve I/O,
including 1) increasing physical memory, 2) creating secondary
indexes, 3) enabling caches from disk drive through file system up
to DBMS buffer, and 4) replacing traditional disks with solid-state
drives (SSDs) for reducing access latency [60]. These approaches

44

can delay thrashing, or perhaps even prevent it in some situations.
In the future work the effectiveness of each of these approaches
could be evaluated.

• DBAs should pay attention to response time of transactions. An-
other key factor in increasing TP was to shorten transaction re-
sponse time. Our experiment showed that TP decreased as ATPT
increased. When DBMS thrashing occurs, DBAs should check if
the response time of transactions in their workloads sharply rose
at a certain point. To reduce the response time, we suggest us-
ing as many processors as possible and specifying primary keys on
the tables referenced by the transactions, as mentioned above. We
challenge database researchers to identify other ways of improving
the response time.

• DBAs should be aware that the thrashing phenomenon tends to
be DBMS-specific. As mentioned before, we observed that even
if the same batchset was presented to all the DBMSes under the
same condition, one DBMS may thrash whereas another didn’t.
This implies that DBAs should check their specific transaction
management and tuning parameters such as the maximum number
of connections and size of shared buffer.

2. When treating update-only workloads, we advise the following.

• Using many processors may not help increase TP for update-only
workloads. We observed in our experiment that as the number
of processors increased, TP decreased, which was different from
what was observed in the read-only transactions. When treating
concurrent update-only transactions, DBMSes are charged with
substantial lock management overhead on the same objects ref-
erenced by the transactions. When multi-core processors are em-
ployed, DBMSes may struggle to tolerate inter-processor contention
on the synchronization constructs related to exclusive lock man-
agement. DBAs thus should be aware of processor contention
caused by more provisioning, when serving update-only workloads.

• When thrashing is observed, DBAs are encouraged to examine
whether the response time of transactions sharply went up at a
certain point. As in the case of the read-only workloads, we ob-
served that decreasing ATPT could help increase TP in update-

45

only workloads as well. Although we did not see the significance of
primary keys on ATPT in our data, we still think that I/O could
be one of the influential factors in decreasing response time. As far
as the significance of I/O to reduce response time in update-only
transactions is concerned, more research is needed.

• Increasing the number of processors may improve ATPT. In our
experiment DBMSes sped up processing the update-only transac-
tions as the number of processors increased. Multi-core processors
may enable intra-parallelism within the same transaction, con-
tributing to decreasing response time. However, it was not help-
ful to have more processors in increasing TP, as mentioned in the
first bullet above. DBAs therefore should attempt to make more
processors available to DBMSes to reduce transaction response
time. Future work should address what other alternatives can
improve response time, resulting in increasing TP.

46

11. Conclusions and Future Work

DBMS thrashing is an impediment to application performance. The less
thrashing that occurs, the better. For that reason, it is important to under-
stand this phenomenon, so that it can be predicted and possibly prevented.

We have explored many possible candidate factors affecting the thrash-
ing phenomenon that are present in modern relational DBMSes. We pre-
sented a refinement of a structural causal model for explicating the sources
of thrashing, which we evaluated with substantial empirical data that ma-
nipulated the underlying factors.

The refined model of the read group explained about 14% and 29% of
the variances of TP (thrashing point) and average transaction processing
time (ATPT), respectively. TP has statistically significant correlations with
ATPT, numProcs, and PK, among which numProcs is the most significant
to TP. ATPT has significant correlations with numProcs and PK, and PK
is more significant to ATPT. The model also reveals significant mediations
from numProcs and PK through ATPT to TP.

The refined model of the update group explained about 15% (8%) of the
variances of TP (ATPT). TP has statistically significant correlations with
numProcs and ATPT, and numProcs is more significant to TP. ATPT has a
significant correlation with numProcs, the only significant factor to ATPT in
the model. The model shows a significant mediation from numProcs through
ATPT to TP as well.

The refined model suggests several engineering implications that can be
helpful to DBAs and provide research questions to database researchers. An
important implication of the model is that transaction response time is one
of the most significant factors of thrashing. When thrashing is detected,
DBAs should examine whether the response time of transactions in their
workloads suddenly increased at a certain point. The model also suggests
that decreasing the response time can increase TP. To reduce the response
time of read-only workloads, the DBAs should consider increasing the number
of processors and specifying a primary key for every table. To speed up the
processing time of update-only workloads, the DBAs may consider using
increasing the number of processors. As increasing the number of processors
has a negative correlation with TP, however, it would be helpful to to explore
other ways of decreasing the response time of the update-only workloads.

To the best of our knowledge, our thrashing causal model is the first to
be articulated across multiple relational DBMSes. Our model leaves room

47

for elaboration, as there are surely other unknown origins/causes of DBMS
thrashing.

We suggest the following areas where future work would be fruitful:
(i) consider different types—compute-bound, mixed, nested, multi-level,
chained, queued, and distributed—of transactions, perhaps including in-
serts/deletes and involving multi-table and multi-attributes, (ii) refine the
operationalization of ROSE and SF and reexamine their significance on TP
and ATPT in the read and update groups, (iii) expand the range or num-
ber of parameter values for various operationalizations, (iv) consider in more
detail moderated mediations that were not statistically significant, (v) re-
investigate the significance of PK on ATPT and TP in the update group,
(vi) scrutinize the cause of the increased significance of numProcs for the
read group in relation to the added value in the numProcs operationaliza-
tion, (vii) apply the alternatives for improving I/O, mentioned in Section 10,
to investigate their relative efficacy, (viii) explore other alternatives to reduce
transaction response time in the update group, (ix) consider the impace of
insertions and deletions and more complicated transactions over multiple ta-
bles, and lastly, (x) collect more samples from DBMSes and re-performing
the D-W test against the data.

The model we have articulated explains about 14% (15%) of the DBMS
thrashing variance for read-only (update-only) transactional workload. Note
that in general high variance explained is exceedingly hard to obtain in many
disciplines, as many factors can make a discernible increase in the explained
variance. Our results imply much room for further refinement and elabora-
tion. Specifically, the database community can propose further refinements to
the refined model to hopefully increase its explanatory power, by (i) studying
the effects of a yet to be proposed causal factors: different types of indexes or
short transaction (selecting a single row only) rates in a batch, (ii) exploring
a wider variety of DBMS subjects, (iii) exploring unknown relationships be-
tween the variables in the final model, (iv) looking into the impact of a variety
of predicates involving joins, IN, and aggregates beyond simple range scans,
(v) investigating whether thrashing can also be attributed to contention on
the pool of threads handling active transactions, (vi) incorporating MPL as
a (dependent) variable into the model and operationalizing it by measuring
the number of sessions (potentially pooled across a limited number of active
connections) as a representative of the fire hose approach [61], and finally,
(vii) considering other statistical tools, such as nonlinear regression [62], lo-
gistic regression [63], and structural equation modeling [64], for the model.

48

In all cases, our model is the appropriate starting place for an elaborated
causal model with more factors.

12. Acknowledgments

This work was supported in part by the National Science Foundation un-
der grants IIS-0639106, IIS-1016205, IIS-0415101, and EIA-0080123, as well
as by the EDISON project managed by the National Research Foundation
of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning
(NRF-2011-0020576). We thank John Kececioglu and Peter J. Downey for
their insightful comments to improve this article. We also appreciate Tom
Lowry and Tom Buchanan for maintaining our experimental instrument, a
laboratory of ten machines and associated software.

References

[1] T. Horikawa, An Approach for Scalability-Bottleneck Solution: Identifi-
cation and Elimination of Scalability Bottlenecks in a DBMS, SIGSOFT
Software Engineering Notes (SEN) 36 (2011) 31–42.

[2] S. Chaudhuri, U. Dayal, An Overview of Data Warehousing and OLAP
Technology, SIGMOD Record 26 (1997) 65–74.

[3] S. A. Schuster, Relational Data Base Management for On-Line Trans-
action Processing, Technical Report 81.5, Tandem Computers Incorpo-
rated, 1981.

[4] R. Johnson, I. Pandis, A. Ailamaki, Critical Sections: Re-emerging
Scalability Concerns for Database Storage Engines, in: DaMoN ’08,
2008, pp. 35–40.

[5] P. J. Denning, Thrashing, http://denninginstitute.com/pjd/PUBS/
ENC/thrash08.pdf, 2008.

[6] G. Weikum, A. Möenkeberg, C. Hasse, P. Zabback, Self-Tuning
Database Technology and Information Services: From Wishful Thinking
to Viable Engineering, in: VLDB ’02, 2002, pp. 20–31.

[7] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, B. Falsafi,
Shore-MT: A Scalable Storage Manager for the Multicore Era, in:
EDBT ’09, 2009, pp. 24–35.

49

http://denninginstitute.com/pjd/PUBS/ENC/thrash08.pdf
http://denninginstitute.com/pjd/PUBS/ENC/thrash08.pdf

[8] H. Jung, H. Han, A. D. Fekete, G. Heiser, H. Y. Yeom, A Scalable Lock
Manager for Multicores, in: SIGMOD ’13, 2013, pp. 73–84.

[9] A. Thomasian, Concurrency Control: Methods, Performance, and Anal-
ysis, ACM Computing Surveys 30 (1998) 70–119.

[10] B. Mozafari, C. Curino, A. Jindal, S. Madden, Performance and
Resource Modeling in Highly-Concurrent OLTP Workloads, in:
SIGMOD ’13, 2013, pp. 301–312.

[11] S. Currim, S. Ram, A. Durcikova, F. Currim, Using a Knowledge
Learning Framework to Predict Errors in Database Design, Information
Systems 40 (2014) 11–31.

[12] A. Dan, D. M. Dias, P. S. Yu, The Effect of Skewed Data Access on
Buffer Hits and Data Contention in a Data Sharing Environment, in:
VLDB ’90, Morgan Kaufmann Publishers Inc., 1990, pp. 419–431.

[13] A. Dan, P. S. Yu, J. Y. Chung, Characterization of Database Access
Pattern for Analytic Prediction of Buffer Hit Probability, The VLDB
Journal (VLDBJ) 4 (1995) 127–154.

[14] M. J. Carey, S. Krishnamurthi, M. Livny, Load Control for Locking:
The ‘Half-and-Half’ Approach, in: PODS ’90, 1990, pp. 72–84.

[15] A. Mönkeberg, G. Weikum, Conflict-Driven Load Control for the Avoid-
ance of Data-Contention Thrashing, in: ICDE ’91, 1991, pp. 632–639.

[16] A. Mönkeberg, G. Weikum, Performance Evaluation of an Adaptive
and Robust Load Control Method for the Avoidance of Data-Contention
Thrashing, in: VLDB ’92, 1992, pp. 432–443.

[17] Y. C. Tay, N. Goodman, R. Suri, Locking Performance in Centralized
Databases, ACM TODS 10 (1985) 415–462.

[18] A. Thomasian, Thrashing in Two-Phase Locking Revisited, in:
ICDE ’92, IEEE, 1992, pp. 518–526.

[19] A. Thomasian, A Two-Phase Locking Performance and Its Thrashing
Behavior, ACM TODS 18 (1993) 579–625.

50

[20] A. Thomasian, A Performance Comparison of Locking Methods with
Limited Wait Depth, IEEE TKDE 9 (1997) 421–434.

[21] P. S. Yu, D. M. Dias, S. S. Lavenberg, On the Analytical Modeling of
Database Concurrency Control, J. ACM 40 (1993) 831–872.

[22] P. A. Franaszek, J. T. Robinson, A. Thomasian, Concurrency Control
for High Contention Environments, ACM TODS 17 (1992) 304–345.

[23] T. Horikawa, Latch-Free Data Structures for DBMS: Design, Implemen-
tation, and Evaluation, in: SIGMOD ’13, 2013, pp. 409–420.

[24] B. Zhang, M. Hsu, Modeling Performance Impact of Hot Spots, in: Per-
formance of Concurrency Control Mechanisms in Centralized
Database Systems, Prentice-Hall, Inc., 1995, pp. 148–165.

[25] A. F. Hayes, Introduction to Mediation, Moderation, and Con-
ditional Process Analysis: A Regression-Based Approach, Guil-
ford, 2013.

[26] E. J. Pedhazur, Multiple Regression in Behavioral Research,
Thomson Learning, 1997.

[27] K. Imai, L. Keele, D. Tingley, A General Approach to Causal Mediation
Analysis, Psychological Methods 15 (2010) 309–334.

[28] Y.-K. Suh, R. T. Snodgrass, R. Zhang, AZDBLab: A Lab Informa-
tion System for Large-scale Empirical DBMS Studies, PVLDB 7 (2014)
1641–1644.

[29] A. Thomasian, Chapter 56: Performance Evaluation of Computer Sys-
tems, in: Computing Handbook, Third Edition, Chapman and
Hall/CRC 2014, 2014, pp. 1–50.

[30] S. S. Lavenberg, Computer Performance Modeling Handbook,
Academic Press, 1983.

[31] D. T. McWherter, B. Schroeder, A. Ailamaki, M. Harchol-Balter,
Priority Mechanisms for OLTP and Transactional Web Applications,
in: ICDE ’04, 2004, pp. 535–546.

51

[32] J. Letchner, M. Balazinska, C. Ré, M. Philipose, Approximation
Trade-offs in a Markovian Stream Warehouse: An Empirical Study,
Information Systems 39 (2014) 290–304.

[33] M. Döhring, H. A. Reijers, S. Smirnov, Configuration vs. Adapta-
tion for Business Process Variant Maintenance: An Empirical Study,
Information Systems 39 (2014) 108–133.

[34] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang, B. W.
Zhao, S. Singh, Torturing Databases for Fun and Profit, in: OSDI ’14,
2014, pp. 449–464.

[35] J. Gray, The Transaction Concept: Virtues and Limitations (Invited
Paper), in: VLDB ’81, 1981, pp. 144–154.

[36] P. Atzeni, F. Bugiotti, L. Rossi, Uniform Access to NoSQL Systems,
Information Systems 43 (2014) 117–133.

[37] R. Cattell, Scalable SQL and NoSQL Data Stores, SIGMOD Record 39
(2011) 12–27.

[38] FAL Labs, Tokyo Cabinet: A Modern Implementation of DBM, http:
//fallabs.com/tokyocabinet/, viewed on Feb 7, 2015.

[39] Symas Corporation, Symas Lightning Memory-Mapped Database
(LMDB), http://symas.com/mdb/, viewed on Feb 7, 2015.

[40] Hwaci, SQLite, http://www.sqlite.org/, viewed on Feb 7, 2015.

[41] MariaDB Foundation, MariaDB: An Enhanced, Drop-in Replacement
for MySQL, https://mariadb.org/, viewed on Feb 7, 2015.

[42] R. T. Snodgrass, P. Denning, The Science of Computer Science: Closing
Statement: The Science of Computer Science (Ubiquity Symposium),
Ubiquity 2014 (2014) 1–11.

[43] J. Gray, A. Reuter, Transaction Processing: Concepts and Tech-
niques, 1st ed., Morgan Kaufmann Publishers Inc., 1992.

[44] Oracle Corporation, The Java Database Connectivity (JDBC), 2014.
http://www.oracle.com/technetwork/java/javase/jdbc/index.

html (accessed April 15, 2014).

52

http://fallabs.com/tokyocabinet/
http://fallabs.com/tokyocabinet/
http://symas.com/mdb/
http://www.sqlite.org/
https://mariadb.org/
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

[45] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, T. G.
Price, Access Path Selection in a Relational Database Management
System, in: SIGMOD ’79, 1979, pp. 23–34.

[46] K. J. Preacher, D. D. Rucker, A. F. Hayes, Addressing Moderated
Mediation Hypotheses: Theory, Methods, and Prescriptions, Multivari-
ate Behavioral Research 42 (2007) 185–227.

[47] Y.-K. Suh, Exploring Causal Factors of DBMS Thrashing, Ph.D. disser-
tation, Dept. of Computer Science, Univ. of Arizona, 2015.

[48] I. Pandis, R. Johnson, N. Hardavellas, A. Ailamaki, Data-oriented
Transaction Execution, PVLDB 3 (2010) 928–939.

[49] J. Nilsson, F. Dahlgren, Improving Performance of Load-store Sequences
for Transaction Processing Workloads on Multiprocessors, in: ICPP ’99,
IEEE, 1999, pp. 246–255.

[50] Joint Committee for Guides in Metrology, International Vocabulary of
Metrology Basic and General Concepts and Associated Terms (VIM)
(3rd Ed.), 2012. http://www.bipm.org/utils/common/documents/

jcgm/JCGM_200_2012.pdf (accessed Dec 05, 2014).

[51] S. Currim, R. T. Snodgrass, Y.-K. Suh, R. Zhang, M. Johnson, C. Yi,
DBMS Metrology: Measuring Query Time, in: Proceedings of the
39th ACM SIGMOD International Conference on Management of Data
(SIGMOD ’13), ACM, 2013, pp. 261–272.

[52] S. Currim, R. T. Snodgrass, Y.-K. Suh, R. Zhang, A Better Way of
Measuring Query Time, 2015. Under review.

[53] S. Currim, R. T. Snodgrass, Y.-K. Suh, R. Zhang, A Causal Model of
DBMS Suboptimality, 2016. Under review.

[54] R Core Team, R: A Language and Environment for Statistical Comput-
ing, R Foundation for Statistical Computing, 2014.

[55] J. Durbin, G. S. Watson, Testing for Serial Correlation in Least Squares
Regression, Biometrika 58 (1971) 1–19.

53

http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf

[56] D. Cochrane, G. H. Orcutt, Application of Least Squares Regression to
Relationships Containing Auto-Correlated Error Terms, Journal of the
American Statistical Association 44 (1949) 32–61.

[57] R. D. Cook, Detection of Influential Observations in Linear Regression,
Technometrics 19 (1977) 15–18.

[58] Wikiversity, Multiple Linear Regression/Assumptions, http:

//en.wikiversity.org/wiki/Multiple_linear_regression/

Assumptions, viewed on Oct 31, 2014.

[59] V. Holt, M. Ramage, K. Kear, N. W. Heap, The Usage of Best Practices
and Procedures in the Database Community, Information Systems 49
(2015) 163–181.

[60] Y.-K. Suh, B. Moon, A. Efrat, J.-S. Kim, S.-W. Lee, Memory Efficient
and Scalable Address Mapping for Flash Storage Devices, Journal of
Systems Architecture 60 (2014) 357–371.

[61] T. Barclay, J. Gray, D. Slutz, Microsoft TerraServer: A Spatial Data
Warehouse, in: Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’00), ACM, New York,
NY, USA, 2000, pp. 307–318.

[62] T. Amemiya, Nonlinear Regression Models, Handbook of Econometrics
1 (1983) 333–389.

[63] J. S. Long, Regression Models for Categorical and Limited De-
pendent Variables, 2 ed., SAGE Publications, 1997.

[64] J. Ullman, Structural Equation Modeling: Reviewing the Basics and
Moving Forward, Journal of Personality Assessment 87 (2006) 35–50.

54

http://en.wikiversity.org/wiki/Multiple_linear_regression/Assumptions
http://en.wikiversity.org/wiki/Multiple_linear_regression/Assumptions
http://en.wikiversity.org/wiki/Multiple_linear_regression/Assumptions

	Introduction
	The DBMS Thrashing Problem
	Research Questions
	Contributions
	Organization

	Related Work
	Exploring Potential Thrashing Factors
	Terminology
	Relevant Variables
	The Resource Complexity Construct
	The Transaction Complexity Construct
	The Schema Complexity Construct
	The Processing Complexity Construct
	The Thrashing Point

	An Initial Model of DBMS Thrashing
	Model Description
	Hypotheses

	Variable Operationalization
	Thrashing Metrology
	Experiment Configuration
	The Thrashing Observance Scenario
	AZDBLab Infrastructure
	Running Experiments
	Thrashing Analysis Protocol

	Exploratory Model Analysis
	Descriptive Statistics
	Exploratory Evaluation Results
	Correlational Analysis
	Causal Mediation Analysis
	Regression Analysis
	Path Analysis

	Lessons

	A Refined Model of DBMS Thrashing
	A Refined Model for the Read Group
	A Refined Model for the Update Group
	The Revised Hypothesized Correlations and Levels

	Confirmatory Model Analysis
	Descriptive Statistics
	Testing Assumptions of Multi-Linear Regression
	Confirmatory Evaluation Results
	Correlational Analysis
	Regression Analysis
	Causal Mediation Analysis
	Path Analysis

	Engineering Implications
	Conclusions and Future Work
	Acknowledgments

